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Introduction

Construction jobsites are dynamic environments that include various
units operating simultaneously. Each unit contains different groups
of workers and equipment, and managing the entire jobsite is a chal-
lenging task (Behzadan et al. 2008; Kamat et al. 2010; Zhang et al.
2017). One of the most important duties of a superintendent is to

keep track of activities and processes and to ensure that the entire
project meets predicted production rates. Unlike manufacturing in-
dustries, which include highly similar processes, many construction
operations are dissimilar, and using techniques such as the first-run
study to conduct upfront learning and improvement does not scale
well to many operations. For example, a robotic arm in a factory
always performs a task similarly. In contrast, a backhoe in a construc-
tion jobsite may perform a specific task using different moves. Also,
recent statistics still show that productivity rates in the construction
industry—in terms of value put in place per worker—are low when
compared with manufacturing industries (Arditi and Mochtar 2000;
Goodrum et al. 2000; Gu and Ho 2000). This low performance is
partially due to the complexity and uniqueness of operations and
activities taking place. As a result, there is a substantial need for ef-
fective methods to continuously monitor construction operations.

Traditional Performance Analysis Methods

The traditional approach to monitoring construction operations in-
cludes analyzing production rates and performance assessments
through direct observations such as work sampling and method
productivity delay model, interviews, supervisor and craftsman
surveys, and crew-balance charting (Kim et al. 2018a, 2019b; Gong
and Caldas 2009; Vahdatikhaki et al. 2015). Jobsite superintendents
and supervisors are usually responsible for keeping track of ongoing
activities at a jobsite using direct observations (Kim et al. 2018a; Liu
and Golparvar-Fard 2015). Interviews and surveys are other means
of interacting with project teams to ensure they perform their duties
efficiently and on time. Manually monitoring construction operations
could be time consuming, error-prone, costly, and not applicable for
larger size jobsites where several operations are simultaneously on-
going (Akhavian and Behzadan 2015; Awolusi et al. 2018; Cheok
et al. 2000; Golparvar-Fard et al. 2011; Gong and Caldas 2011;
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Joshua and Varghese 2010b). Therefore, there is a growing demand
for alternative automated solutions.

Collecting and processing data in a timely manner is another
important component of an efficient performance monitoring sys-
tem. Traditional performance monitoring approaches are not real-
time and rely heavily on past experiences of jobsite personnel to
analyze various situations and take corrective actions when neces-
sary. The construction industry ultimately requires automated per-
formance monitoring systems capable of collecting and analyzing
performance data and providing feedback and corrective decisions
in real-time (or near-real-time) settings (Luo et al. 2018; Roberts
and Golparvar-Fard 2019).

Overview of Automated Construction Monitoring System

Although the construction industry still suffers from a lack of a
holistic, automated, real-time performance monitoring system, sev-
eral researchers have tried to address the issue in recent years. A
typical visual data–driven and automated resource monitoring on
construction jobsites consist of several levels, as shown in Fig. 1.
At the first level, spatial locations of operations (and/or resources)
need to be identified and continuously tracked, which is shown in
dark gray in Fig. 1. This level is independent of other levels because
it aims to estimate three-dimensional (3D) locations of construction
equipment or workers at discrete points in time and track their
movements in real time. This level leads to a four-dimensional
(4D) system that could track the construction site dynamics (Tang
and Golparvar-Fard 2017). This activity aims to evaluate the per-
formance of a conceptual framework designed to capture the 4D
site dynamics by integrating data streams received from active/
passive spatial sensors. The ultimate goal of this level is to collect
spatial location data at any given time for further analysis.

The next level consists of three sublevels, which are shown in
light gray in Fig. 1. In the first sublevel, resource activities need
to be recognized. Various equipment types and workers perform
different activities simultaneously on a jobsite, thus necessitating
an efficient method to recognize these activities. Equipment/worker
activities are ongoing processes over time, whereas actions are
single efforts. In other words, actions, when grouped together, form
activity, and each action includes a series of consecutive movements
(Khosrowpour et al. 2014b; Roberts et al. 2018). Therefore, these
actions are not independent events but rather a sequence of events
correlated with one another. Moreover, there is a difference between
detection and recognition. Activity detection refers to a technology
that can identify the occurrence of activity within digital images,
sounds, and so on. On the other hand, activity recognition describes
a technology that attempts to establish which type of activity is tak-
ing place. The next sublevel aims to exploit the previous level by
recognizing activities in different time periods and tracking activities
such that the system is responsive in real-time.

The final sublevel (i.e., performance monitoring) aims to deter-
mine which activities are completed and monitor the progress
of activities that are underway. This information can be used to

generate Key Performance Indicator (KPI) dashboards on activities
and crew-balance charts (Roberts and Golparvar-Fard 2019). In the
case of heavy-construction equipment, this activity not only does ex-
tend the monitoring concept to equipment life-logging, maintenance
records, fuel consumption, active and idle times, process charts, and
recommended corrective measures, but it also considers the entire
fleet of equipment as a system. A project performance control frame-
work is capable of converting the outcome of the aforementioned
research activities (e.g., the 4D spatial location of the equipment/
workers, activity recognition, and activity tracking, among others)
into usable information and Process Performance Indicators (PPIs)
such that corrective decisions could be made immediately.

Two of the most significant resources for construction projects
are equipment and workers, each having different characteristics
and productivity rates. Construction equipment operations need
to be systematically measured and evaluated to maintain the project
budget and schedule (Ahn et al. 2012; Gong and Caldas 2011; Kim
et al. 2018a, 2019b). For example, a backhoe needs to excavate and
move a specific amount of soil over a predefined duration. Con-
struction managers must keep track of the activities performed by
each piece of equipment to ensure that its predefined productivity is
accurately satisfied by taking corrective actions such as replacing
parts/operator or repairing the engine.

Construction workers (skilled, semiskilled, and unskilled) are
another important resource within the industry. Numbers show that
labor costs—particularly in the US and Canada—comprise on aver-
age 33%–50% of the total budget in a typical construction project
(Hanna 2001; Khan and Sohail 2013). Superintendents must con-
stantly communicate and coordinate work sequences with workers
to ensure they are on track and to prevent delays to critical and
value-adding activities. Therefore, detecting and analyzing worker
and equipment activities would be the first step toward tasks such
as productivity measurement and analysis, safety, and quality con-
trol (Cheng et al. 2018; Joshua and Varghese 2010a; Wang et al.
2017) of construction operations.

Overview of Automated Activity Recognition Methods

In the last 2 decades, advancements in emerging technologies have
enabled researchers and practitioners to move toward developing
automated, real-time performance monitoring systems for the con-
struction industry (Asadi et al. 2019a, b; Awolusi et al. 2018).
Recent developments in the domain of sensor-based technologies
(from both hardware and software perspectives) have helped con-
struction managers efficiently interact with other parties in the
jobsite and achieve increased productivity and safety performance
(Cezar 2012; Han and Golparvar-Fard 2017; Kamišalić et al.
2018; Zhang et al. 2017; Yang et al. 2014). Based on the type
of sensors implemented, automated activity detection and recogni-
tion methods could be divided into three major categories, namely
(1) kinematic-based methods; (2) computer vision–based methods;
and (3) audio-based methods.

Kinematic-based methods utilize several sensors such as accel-
erometers and gyroscopes to recognize different kinematic patterns
of activities carried out by construction workers and equipment.
These sensors can be microfabricated into an electronic chip, such
as an inertial measurement unit (IMU), to collect data that upon
processing could provide information about the rotational speed
and orientation of equipment. Also, some IMUs are based on a
technology called microelectromechanical systems (MEMS),
which is the most popular sensor type due to its small size and low
cost. MEMS sensors are quite common in the other industries and
have a variety of applications in several domains such as health
care, unsupervised home monitoring (home telecare), fall detection,

Fig. 1. Overview of an automated construction monitoring system.
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weather monitoring, recognition of athletes’ movement patterns,
asset management, and industrial control (Hanna 2001; Khan and
Sohail 2013; Kim et al. 2019b). On the other hand, these devices
have recently been introduced and utilized in construction for
various purposes such as physiological monitoring, environmental
sensing, proximity detection, location tracking, activity detection,
and safety measurement and monitoring.

Some sensors such as the Global Positioning System (GPS) and
some technologies such as radio-frequency identification (RFID)
tags and ultrawideband (UWB) are also important for activity de-
tection. For example, knowing that an excavator is close to a truck
likely means that the excavator is loading the truck (Akhavian and
Behzadan 2013a). However, these sensors have more applications
in construction machine and worker location tracking. On the other
hand, accelerometers and gyroscopes are relatively suitable for ac-
tivity detection purposes (Lim et al. 2015). These types of sensors
capture the acceleration and rotation along the x-, y-, and z-axes.
The location of these sensors on the equipment or worker can in-
fluence the accuracy of activity recognition (Joshua and Varghese
2013; Nath et al. 2017).

Furthermore, audio-based methods mainly rely on recording
sound patterns of equipment performing certain tasks. These meth-
ods have been used in recent years as a suitable alternative to
kinematic-based methods. The most common tools used in this ap-
proach are ordinary microphones, contact microphones, and micro-
phone arrays. Microphones can be categorized according to their
pick-up pattern and type of transducer (Cheng et al. 2018).
Collected audio data are then analyzed using signal processing al-
gorithms to recognize different types of field activities.

Finally, computer vision–based methods use two-dimensional
(2D) image/video cameras and 3D range cameras (e.g., Flash
LiDAR) to capture visual data from construction jobsites for further
processing. These methods process images or videos captured from
the construction jobsite by different types of cameras such as depth
cameras [e.g., Red Green Blue-Depth (RGB-D)] (Khosrowpour
et al. 2014b) that must be installed in proper locations with clear
lines of sight to record all ongoing activities during construction.

In addition to implementing each method individually, using
multiple sensor types for collecting data (i.e., a multimodal sensor)
can increase the accuracy of activity detection (Awolusi et al.
2018). Moreover, along with choosing the optimal sensor types
as preliminary sources of data, other factors such as the optimum
number and position of sensors and the data analysis techniques
play critical roles in the success of activity detection and monitor-
ing (Joshua and Varghese 2010a).

This paper provides a concise review of the most recent studies
that have utilized the aforementioned methods to detect the activ-
ities of construction equipment and workers. To achieve this goal,
the study is structured as follows. The next section presents an over-
view of various applications of construction activity detection,
which are identified through a detailed literature review. Then, the
authors elaborate on details regarding common tools and tech-
niques suggested by researchers for automatically detecting the ac-
tivities of construction resources. Finally, conclusions, discussions,
and future research directions are presented.

Potential Applications for Activity Recognition and
Tracking Systems within the Construction Industry

There are various reasons why project managers could be interested
in recognizing and continuously tracking activities of workers and
heavy equipment on construction jobsites. The authors conducted a
thorough literature review and identified key potential applications,

as listed in Fig. 2. The following subsections provide a detailed
account of each potential application for equipment, workers, and
both, respectively.

Applications of Activity Recognition and Construction
Equipment Tracking

Heavy equipment and tools are essential resources for the success
of any construction project. Recognition of construction machines
and activity tracking could lead to several useful outcomes, as
follows.

Machines’ Well-Being or Abnormality Assessment
New equipment models possess health monitoring systems that
can provide valuable information, such as fuel consumption and
utilization time. However, those systems are not compatible with
other types of equipment, especially older models. By collecting
data, monitoring equipment status, and recognizing equipment ac-
tivities over time, equipment’s well-being or abnormality can be
detected so project managers can take preventive measures when
needed to reduce operating/repair costs and idle times (Kim
et al. 2018a).

Environmental Performance Monitoring
Environmental performance monitoring is one of the most crucial
applications of equipment activity recognition. Heavy equipment
used in construction projects often releases harmful smoke, which
is unhealthy for project personnel and is detrimental to the environ-
ment. Continuous emission control during field operations will
help locate and report deficiencies for further maintenance, repair,
or corrective action (Ahn et al. 2012). In the last few years, several
methods have been introduced to detect these deficiencies based on
equipment performance. Equipment engines generate distinctive
sound and vibration patterns when performing different activities,
which makes it possible to recognize if the engine is working prop-
erly. Following this procedure, audio/kinematic patterns of old and
obsolete machines could be identified using activity recognition,
compared with newer models, thus limiting the emission of more
pollutants in the air. To this end, detecting idle times and non-value-
adding activities through activity recognition is particularly benefi-
cial to reducing fuel use and consequently lowering equipment
emissions (Akhavian and Behzadan 2014).

Underground Infrastructure Protection
One major issue during excavating operations is the likelihood of
causing damage to underground pipelines. Thus, there is an inher-
ent need to develop automated systems capable of detecting poten-
tial damage to underground utility lines including cables, gas
pipelines, and communication networks (Cao et al. 2015, 2017a, b;
Yang et al. 2015).

Fig. 2. Construction activity recognition applications.
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Applications of Activity Detection and Tracking of
Construction Workers

Human labor is a vital resource in every construction project. Work-
ers are often vulnerable to various safety hazards and potential ac-
cidents. Continuous monitoring of workers’ activities, behaviors,
and mental state could potentially decrease the rate of jobsite acci-
dents, prevent injuries, falls, or work-related musculoskeletal disor-
ders (WMSDs) (Nath et al. 2018; Ren-Jye et al. 2018). The following
subsections summarize specific applications and potential benefits of
recognizing and tracking workers on construction jobsites.

Detecting Near-Miss Falls, Slips, and Trips
A near-miss incident can be defined as an event in which no dam-
age or injuries actually occurred, but which, under slightly different
circumstances, could have resulted in harm (Kunreuther et al.
2004). The major causes of death and injury on a construction job-
site are slips, trips, and falls (Yoon and Lockhart 2006). Monitoring
workers’ abnormal bodily responses at a specific location through
activity detection gives the opportunity to quickly identify near-miss
incidents (and potentially risky conditions) and take appropriate
actions to prevent actual accidents before they occur by removing
jobsite obstacles or securing fall areas (Joshua and Varghese 2010a;
Lee et al. 2020; Yang et al. 2014).

Detecting Unsafe Worker Motions
Because construction workers perform tasks involving forceful ex-
ertion while in awkward postures, some workers are not familiar
with the correct ways of walking, sitting, and picking up/holding
materials at construction jobsites. Construction workers have ex-
hibited approximately a 50% higher risk of WMSDs than workers
in other industries (Schneider 2001). Both direct (e.g., vision and
imaging technologies) and indirect (e.g., physiological sensor) ob-
servation of workers to inform them about correct physical motions
are tedious processes. Monitoring human body motions can iden-
tify several postures with high risks of physical injury (Seo et al.
2014). Capturing awkward postures occurring repetitively provides
necessary information to construction managers to improve work-
ers’ postures by instructing and training them in simulated environ-
ments (Ren-Jye et al. 2018). The level of force, as a risk indicator
associated with WMSDs, can be quantified using direct measure-
ments (Jahanbanifar and Akhavian 2018). In addition to directly
monitoring human posture, automatic tracking of workers’ vital
signs in the construction industry can be achieved by monitoring
workers’ physiological measures such as body temperature and
heart rate. This can help identify aberrations in workers’ bodies,
and predict the occurrence of near-miss incidents (Lim et al. 2015).

Assigning Specific Tasks to Workers
Construction workers feel more fatigued as time goes by because
many tasks require physical exertion. Managing workers’ fatigue
helps maintain desired labor productivity and reduces the risk of
accidents (Hallowell 2010). By monitoring workers’ movements,
unusual motions can be detected and reported to the project man-
ager so that fewer physically challenging tasks are assigned to an
injured or exhausted worker (Joshua and Varghese 2010a).

Applications of Activity Recognition and Tracking for
Both Workers and Equipment

Other than the aforementioned applications of activity recognition
and tracking for workers and equipment categories separately,
additional benefits can be achieved if these tasks are conducted
simultaneously for both categories. Perhaps the most common
application of activity recognition for construction resources is
measuring productivity, which is a precursor to estimating cost

and project schedule. In the following subsections, potential direct
and indirect benefits of activity detection/recognition for both
equipment and workers are briefly discussed.

Progress Monitoring
Recognizing activities is essential for tracking progress and calcu-
lating quantities of accomplished work (Rashid and Louis 2020;
Slaton et al. 2020). By comparing the actual and planned quantities
of accomplished work, the estimated completion time can be modi-
fied, and necessary preventive/corrective actions can be planned
(Golparvar-Fard et al. 2011). Contractors also need to monitor
and record actual productivity rates as a valuable source of infor-
mation for future projects (Kim et al. 2018a). Useful information
for these purposes might include durations of non-value-adding ac-
tivities such as maneuvering and swinging for heavy equipment,
and calculating cycle times for repetitive activities of both construc-
tion machinery and workers (Sabillon et al. 2020).

Generating Input for Simulation Models
In the last 3 decades, construction simulation has been utilized to
address the stochastic nature of activities, predict project comple-
tion times, and improve resource allocation prior to the start of the
project. Such stochastic simulation models need accurate input data
in order to generate reliable outputs. Traditional methods use static
input data that do not cover factual aspects of the project because
of the dynamic and transient nature of construction operations
(Song and Eldin 2012). Continuously updating simulation models
based on actual data during the construction phase yields more re-
liable results. Moreover, there is a need for a systematic way to
modify the model based on the ground-truth data (Akhavian and
Behzadan 2013b).

Activity recognition helps find the duration and cycle time of
activities and their utilized resources. Activity recognition and
monitoring systems could serve as a systematic method for data
collection and then transfer data to simulation models during the
life cycle of projects to acquire precise results. By deriving the lat-
est results from simulation models, project managers can analyze
what-if scenarios, evaluate the situation, choose alternative plans,
and communicate those plans with their personnel (Akhavian and
Behzadan 2012).

Developing 4D Visualization Systems
The simulation model output can further be utilized to generate 4D
or five-dimensional (5D) models for construction projects. These
4D/5D models can visualize the construction process along with
related ongoing costs. Additionally, these models perform a sub-
stantial role in the future of construction management due to their
application in creating a general and synergetic framework to store
and manage project information during its life cycle. Project man-
agers can rely on these models to detect bottlenecks in the project.

Providing Information for Bidding
A construction bid is a process of providing a potential customer
with a proposal to build or manage the building of a structure. It is
also a method through which subcontractors pitch their services
to general contractors. By determining the work spent on value-
adding and non-value-adding activities (e.g., waiting and preparing
required materials), the opportunity to win a bid increases. Because
the difference between the estimated costs and actual costs will be
decreased, contractors can bid on the project with more certainty
and escalate their profit margins.

Predicting Action Patterns of Repetitive Activities
Considering the characteristics of construction operations, repeti-
tive actions are important elements in a construction system. De-
spite the importance of repetitive actions, predicting action patterns
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is not performed well due to a lack of accurate data. Predicted ac-
tion patterns can be used for calculating activity cycle times and
ultimately, the overall project completion time (Akhavian and
Behzadan 2015).

Identifying Areas of Improvement
Activity recognition of both workers and equipment can provide
detailed information such as idle time, operation time, and moving
time. Analyzing recognized activities can be helpful in identifying
factors that inhibit productivity. By controlling those factors, the
management team can remove waste elements (Kim et al. 2018a;
Roberts and Golparvar-Fard 2019; Roberts et al. 2018). In addition,
considering that materials are moved and installed by workers and
equipment, activity recognition can also be extended to managing
material (Zhu et al. 2017) and identifying areas for improvement in
construction jobsites.

Automated Methods for Activity Detection of
Construction Resources: Literature Review

Due to the complexity and unique characteristics of projects,
the construction industry suffers from serious issues such as low

productivity rates, frequent delays in projects’ completion dates,
and significant deviations between anticipated and actual costs
of projects. Automatically detecting and monitoring construction
resources (both equipment and worker) is a first step to addressing
those issues. As indicated previously, the automated methods for
detecting and recognizing activities of construction equipment and
workers mainly depend on types of input data and the selected
sensors/techniques for collecting and processing data. Common
activity detection techniques could be divided into three major cat-
egories, namely (1) kinematic-based, (2) vision-based, and (3) audio-
based methods. The following sections provide more details about
each category as well as the implemented algorithms and tools for
data collection and processing.

Kinematic-Based Methods for Activity Recognition of
Construction Equipment

Most construction machines generate distinct kinematic signals
while performing different tasks (Ahn et al. 2013; Akhavian and
Behzadan 2015). These kinematic signals include acceleration, an-
gular velocity, magnetic fields, and orientation data. It is possible
to correlate each activity with specific kinematic signal patterns.

Table 1. Basic components of different kinematic-based activity recognition systems for equipment and tools

References Objectives
Equipment type and

quantity

Number of classifications
(different types of

activities)
Tools (sampling

frequency)

Testing
environment
(setting)

Ahn et al. (2012) 1. Elaborate on the
relationship between
operational efficiency and
environmental performance

Medium-sized
excavator
[CAT 321C long truck
excavator compact
radius (LCR),
Deerfield, IL]

3 activities (engine off,
idle, and working)

3-axes accelerometer
(100 Hz)

Real project
(equipment cabin)

2. Monitor the operational
status of equipment

Akhavian and
Behzadan (2012)

Develop a remote tracking
technique to capture field data
from construction equipment

Model equipment
(loader and truck)

— 3-axis magnetic field
sensing, and 3-axis tilt
sensing

Indoor laboratory-
scale setting

Akhavian and
Behzadan
(2013b)

Multimodal-process capturing
for automated simulation
models generation

2 types of equipment 4 activities (load, haul,
dump, and return)

1. A network of UWB
receivers and tags

—

2. Attitude and heading
reference system
(AHRS)

3. Zigbee-enabled weight
Ahn et al. (2013) Analyze the idle time ratio of

equipment
4 types of equipment
(excavator)

3 activities (working,
idling, and engine off)

Accelerometer withrange
of �2g (100 Hz)

Instructed operator
(inside the cabin)

Akhavian and
Behzadan (2015)

Develop an automated method
to detect equipment activities
and their durations for
simulation input modeling

Equipment
(front-end loader)

7 activities (engine off,
forward and backward
moving, stationary idling,
lowering the boom, raising
the boom, scooping, and
dumping)

GPS sensor, 3-axis
accelerometer, and
3-axis gyroscope
(100 Hz)

Controlled
(i.e., instructed)
and normal
(uninstructed)

Kim et al.
(2018a)

Measure the construction
equipment operation cycle
time

Equipment (excavator) 5 activities [idle,
wheelbase motion, cabin
rotation (anticlockwise
and clockwise rotation),
and bucket/armmovement]

Inertial measurement
units (IMUs) embedded
in a smartphone (128 Hz)

Real project
(equipment cabin)

Rashid and Louis
(2019)

1. Time-series data
augmentation to generate
synthetic training data

2 types of equipment
(excavator and
front-end loader)

9 activities for excavator,
and 10 activities for front-
end loader

3-axis accelerometer, and
3-axis gyroscope (80 Hz)

Real project
(bucket, arm, and
boom)

2. Recognize equipment
activities

Bae et al. (2019) Identify excavator activities
using joystick signals

DX220LC excavator
(Suwanee, GA)

6 activities (digging,
leveling, lifting, trenching,
traveling, and idling)

Electronic joystick and
peripheral component
interconnect (PCI)
eXtensions for
instrumentation (PXI)

Real project
(equipment
joystick)
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Several studies have been conducted on applications of kinematic
signals for recognizing construction equipment activities. Table 1
summarizes general information about these studies, including
the main objectives, number and types of equipment studied, num-
ber of activities covered, devices used to record data, the testing
environment, and the placement of the devices on the jobsite
or equipment cabin. An overview of a general framework for a
kinematic-based activity detection system is presented in Fig. 3.

Processing recorded kinematic signals and extracting useful in-
formation are other important aspects of developing a robust activity
recognition system. Several studies have adopted machine-learning

algorithms to distinguish various activities by extracting different fea-
tures. Table 2 presents an overview of popular processing techniques
including types of implemented machine-learning algorithms, fea-
tures utilized, procedures for feature extraction, and ultimately the
reported levels of accuracies.

Image/Video-Based Methods for Activity Detection of
Construction Equipment

Computer-vision techniques present an alternative solution to
kinematic-based techniques for tracking and monitoring construc-
tion equipment. In particular, advancements in computational
capacities, namely parallel computing on graphics processing units,
and rapid evolution of object detection and tracking methods enable
researchers and practitioners to provide semi-real-time information
about activities taking place with various construction equipment at
a relatively low cost (Azar and Kamat 2017; Khosrowpour et al.
2014b; Kim et al. 2019b; Liu and Golparvar-Fard 2015; Roberts
and Golparvar-Fard 2019; Roberts et al. 2018; Tang and Golparvar-
Fard 2017). The earliest attempt to develop a vision-based equip-
ment tracking method was carried out in 2007, in which hue,
saturation, and value color space were used to isolate an excavator
from plain backgrounds and track the equipment (Zou and Kim
2007). After 2010, related research efforts focused on three main
areas: object detection, tracking, and activity recognition. An over-
view of the typical workflow of vision-based equipment monitoring
systems is presented in Fig. 4. Also, Table 3 provides a summary of
these research projects.

Object Detection
Some of the vision-based systems employed a background sub-
traction method, such as Gaussian mixture model (GMM) and

Fig. 3. Overview of the kinematic-based methodology for activity
recognition.

Table 2. Overview of kinematic signal processing techniques used for activity detection of construction equipment and tools

References Machine-learning algorithm Features
Feature extraction
characteristics Accuracy

Ahn et al. (2012) — Signal energy — —
Akhavian and Behzadan
(2012)

Not a classification model — — —

Akhavian and Behzadan
(2013a)

K-means methods in
conjunction with data-mining
techniques

Data: — —
1. Position
2. Weight
3. Angle

Ahn et al. (2013) 1. Naïve Bayes 15 time-domain features
(average resultant acceleration,
mean, standard deviation, peak,
and correlation)

128, 256, 512, and 1,024-
sample windows (50% overlap)

Over 93%
2. Instance-based learning

(IBL): K-nearest neighbor
(KNN)

3. Decision tree (J48)
4. Multilayer perceptron

Akhavian and Behzadan
(2015)

1. Logistic regression, 42 features Windows of 128 data points
with 50% overlap (1.28 s)

Overall accuracy of
more than 86%2. K-NN 1. Time-domain [mean,

variance, peak, interquartile
range (IQR), correlation, and
root-mean square (RMS)]

3. Decision tree

2. Frequency-domain features
(signal energy)

4. Neural network
(feedforward back-
propagation)

5. Support vector machine
(SVM)

Kim et al. (2018a) 1. Random forest Time- and frequency-domain
features (total of 74 features)

Window size of 1 s (50%
overlap)

91.83%
2. Naïve Bayes
3. J48
4. Sequential minimum

optimization (SMO)
Rashid and Louis (2019) Recurrent neural network

(RNN)
18 features (i.e., three IMUs× 6
data stream per IMU)

1-s window size (i.e., 76 data
points)

Over 96% for fourfold
augmentation

Bae et al. (2019) Dynamic time wrapping — Sampling frequency of 10 Hz Up to 100%
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Bayesian-based model, to isolate moving objects in the videos
captured by a stationary camera (Bügler et al. 2017; Chi and
Caldas 2011; Rezazadeh Azar and McCabe 2011; Roberts and
Golparvar-Fard 2019; Roberts et al. 2018), and then classified the
remaining blobs by other classifiers, such as Bayes or neural net-
works (Chi and Caldas 2011). Later efforts focused on more sophis-
ticated feature-based recognition methods, such as histogram of

oriented gradients (HOG) (Azar and McCabe 2012; Memarzadeh
et al. 2013; Rezazadeh Azar and McCabe 2011) and latent support
vector machine (SVM) (Tajeen and Zhu 2014), to detect construction
equipment in construction images and videos. Later, part-based ap-
proaches were proposed to improve detection performance and to
estimate the pose of excavators (Soltani et al. 2017; Yuan et al.
2016). Moreover, a method was proposed for pose estimation of
excavators using 2D detections in the frames captured by two cali-
brated cameras (Soltani et al. 2018). These studies listed occlusion,
target viewpoints, and visual noises as the main challenges to achiev-
ing reliable precision and recall rates. In addition, these vision-based
methods were not able to identify individual equipment; thus a
marker-based method, using the AprilTag algorithm, was developed
to identify labeled equipment in the video frames (Azar 2015).

Advances in the deep learning methods have also affected this
field of construction research, and the most recent studies have
started using different versions of convolutional neural networks
(CNN) and long short-term memory (LSTM) because they were
able to outperform older methods (Fang et al. 2018; Kim et al.
2017a, 2019a; Hernandez et al. 2019).

Vision-Based Tracking
The second group of studies aimed at developing reliable methods
for tracking construction equipment in which visual occlusion, ex-
cessive visual noise, changing orientations, and interclass/intraclass

Fig. 4. Typical workflow of vision-based equipment monitoring
systems.

Table 3. Summary of the vision-based equipment monitoring systems

References Objectives Methods used Action detector
Testing environment

(setting)

Gong and Caldas (2011) Estimate production cycles of a
miniloader

Background subtraction and
tracking

2D motion characteristics Real projects

Rezazadeh Azar et al.
(2012)

Estimate production cycles of
loading activities

HOG object detector and tracking SVM to analyze proximity and
positioning of the equipment

Real projects

Golparvar-Fard et al.
(2013)

Estimate production cycles of
various earthmoving activities

HOG features SVM to analyze HOG features
and classifying equipment
actions

Real projects

Rezazadeh Azar and
McCabe (2011)

Estimate production cycles of
hauling activities

HOG object detector and tracking 2D motion characteristics Real projects

Liu and Golparvar-Fard
(2015)

Crowdsourcing video-based
activity analysis

HOG object detector and
tracking. User annotations on
activities

Crowdsourced Real projects

Kim et al. (2015) Safety assessment through
crowdedness and proximity
estimation

GMM background subtraction
and Kalman filter tracking

Fuzzy inference Real projects

Bügler et al. (2017) Estimate production cycles of
loading activities

GMM background subtraction
and kernel covariance tracking

2D motion characteristics and
the 2D threshold for proximity

Real projects

Kim et al. (2017b) Safety assessment and warning GMM background subtraction
and HOG for detection and
Kalman filter tracking

Fuzzy inference Real projects

Rezazadeh Azar (2017) Semantic annotation of
construction videos

HOG object detection and frame
similarity measurement

Bayesian belief network Videos of real projects

Kim et al. (2018b) Estimate production cycles of
loading activities in tunneling

Region-based fully convolutional
networks

2D threshold for proximity Tunneling projects

Kim et al. (2018c) Estimate production cycles of
loading activities

Tracking-learning-detection
(TLD) algorithm

2D threshold for proximity Real projects

Kim et al. (2019a) Proximity monitoring between
mobile resources

CNN object recognition Distance measurement in
rectified images

UAV-captured images
in real projects

Kim et al. (2019b) Estimate production cycles of
hauling activities

License plate detection and
recognition (LPDR), and deep
convolutional network

Rule-based reasoning for
entrance and exit of dump
trucks

Real projects

Roberts and Golparvar-
Fard (2018, 2019)

Estimate production cycles of
hauling activities

HMM, atomic action recognition,
deep learning–based detection
and tracking

2D spatiotemporal features Real projects

Kim and Chi (2019) Estimate productivity and cycle
time of earthmoving operations

Faster recursive CNN (R-CNN)
and TLD

Sequential pattern analysis Real projects
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variations were considered as the primary challenges. Various
methods, such as mean-shift and Kalman filter (Gong and Caldas
2011), counter-based and point-based algorithms (Park et al.
2011b), kernel covariance (Teizer 2015), and particle filtering (Zhu
et al. 2016) were evaluated for tracking construction equipment. In
addition to the single-view tracking, some research studies focused
on tracking in stereo vision (3D), in which the epipolar geometry
enables 3D localization of the objects of interest (Brilakis et al.
2011; Park et al. 2011a).

Some research efforts developed hybrid tracking algorithms,
using HOG and Karhunen-Loeve transform (KLT) (Rezazadeh
Azar et al. 2012) and latent SVM and particle filtering (Zhu et al.
2017) to tackle occlusion and interclass/intraclass variations. A re-
cent study integrated random ferns for key-point recognition, and
a median-flow and pyramidal optical flow algorithms with a real-
time online learning ability to achieve a high recall/precision
tracking performance (Kim and Chi 2017).

Activity Recognition
Object detection and tracking modules provide spatiotemporal data
of the objects of interest; i.e., construction equipment, which could
be further analyzed for activity recognition. Research efforts in this
area can be classified into two main groups: activity recognition for
productivity estimation and safety monitoring. In particular, mon-
itoring the process of loading dump trucks has been the subject
of numerous studies because interactive operations are suitable can-
didates to investigate vision-based capabilities. SVM was used to
analyze the interactions of the detected excavator and dump trucks
in video frames (Rezazadeh Azar et al. 2012). Another system also
used SVM to analyze HOG descriptors to classify the actions of an
excavator (Golparvar-Fard et al. 2013). Other studies used hard-
coded thresholds to assess the proximity of the tracked excavator
and dump truck for activity recognition (Bügler et al. 2017; Kim
et al. 2018b, c). There were also some efforts to recognize single-
equipment operations, such as hauling by trucks (Azar and McCabe
2013; Golparvar-Fard et al. 2013) and earth movement by a mini-
loader (Gong and Caldas 2011). These systems mainly relied on 2D
motion descriptors for activity recognition and analysis. Another
recent study takes advantage of a hidden Markov model (HMM)
together with deep learning–based detection and tracking tech-
niques to automatically label a sequence of activities in a given
video (Khosrowpour et al. 2014b; Roberts and Golparvar-Fard
2019). These methods show good performance with earthmoving
operations as well as drywall construction.

The second group of research projects focused on safety analysis,
in which they mainly assessed the proximity of tracked equipment
and workers. For example, fuzzy inference was used to determine
proximity and crowdedness as safety indicators, in construction vid-
eos (Kim et al. 2015, 2017b), and an algorithm was proposed to
monitor proximity in the unmanned aerial vehicle (UAV)-captured
images (Kim et al. 2019a; Lin and Golparvar Fard 2016).

In addition to the productivity measurement and safety assess-
ment, activity recognition could be used for semantic annotation of
construction videos (Rezazadeh Azar 2017).

Audio-Based Methods for Activity Detection of
Construction Equipment and Workers

A construction jobsite is generally a noisy environment, and the
main source of the noise is the working sounds of heavy equipment
and tools in the workplace. These noises can provide useful
information indicating ongoing operations, processes, and site
conditions. To accomplish the potential of the audio-based equip-
ment activity detection, diverse studies employed a microphone for
collecting audio data, signal processing for cleaning sound data and

extracting necessary features, and machine or deep learning tech-
niques for detecting and classifying an activity type. Sound iden-
tification generally entails following four primary processes: signal
analysis, feature extraction, model training, and model testing
(Gaikwad et al. 2010). This section summarizes the methodology
and the outcomes of the recent studies regarding the applications of
audio-based methods for recognizing and monitoring activities of
tools and machines at a construction jobsite. An overview of a gen-
eral framework for an audio-based activity detection system is pre-
sented in Fig. 5.

Signal Analysis and Feature Extraction
Diverse types of audio features have been examined for enhancing
the accuracy of audio signal classification. Two studies (Lu et al.
2002; Patsis and Verhelst 2008) extracted a total of 62 features,
grouped into 15 distinct sets of features including both time and
frequency characteristics. Each feature is obtained by segmenting
the superframe into smaller frames and evaluating the needed val-
ues. Each feature uses a frame of different lengths and overlap.
Audio-based event detection frameworks identify descriptors for
enhancing accuracy by representing different audio signal domains.
For example, characteristics such as the root-mean square (RMS)
can be extracted in the time domain, but the variance of the spectral
flux (VSFLUX) pertains to the frequency domain. The correct
usage of different sets of descriptors would depend on the sound
classification process and purpose.

Model Training and Sound Classification
To conduct sound classification, previous studies investigated di-
verse classifiers: KNN, GMM, HMM, artificial neural networks,
SVMs, and deep neural networks (neural-network architectures
with several hidden layers) (Gencoglu et al. 2014). To accomplish
satisfactory performance and reliability, these classifiers that sup-
port distinct features are selected pertaining to sound data types
(Sharan and Moir 2016). The machine learning–based classifiers
include Bayesian and naïve Bayesian networks (John and Langley
1995), the Hoeffding tree (Hulten et al. 2001), the decision table
(Kohavi 1995), the decision tree (Quinlan 2014), the random tree
(Rokach and Maimon 2008), the random forest (Breiman 2001), the
multilayer perceptron (MLP) (Haykin 2009), sequential minimum
optimization (SMO) (Platt 1998), K-nearest neighbors (KNN)
(Aha et al. 1991; Altman 1992), part-based decision (Frank et al.
2002), and linear logistic regression (Sumner et al. 2005).

Some studies have applied various algorithms such as SVM and
HMM to test and evaluate the audio-based classification of the ac-
tivity types related to construction operational equipment (Cheng
et al. 2016, 2017a; Cho et al. 2017). Cheng et al. (2016, 2017a)

Fig. 5. Overview of the audio-based methodology for activity
recognition.
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proposed an approach to recognize two types of activities (value-
adding and non-value-adding) using audio data for single machine
scenarios. Their proposedmethod consists of four steps: (1) recording
audio data; (2) filtering noises using a signal enhancement algorithm;
(3) using short time Fourier transform (STFT) to extract features; and
(4) training a machine-learning algorithm using extracted features
(STFT magnitude values). Hanning windows at size 512 with
50% overlap and 1,024-point discrete Fourier transform (DFT) are
chosen for time bins. SVM has been utilized for binary classification
of activities. The radial basic function has been used as the kernel
function in their SVM model. They evaluated this method on four
types of equipment and obtained over 90% accuracy. In this method,
they used a recorder (DR-05 2 GB, Tascam, TEAC Corporation,
Montebello, CA) to record audio from the equipment.

Furthermore, Cheng et al. (2017b) analyzed the acoustical
modeling of construction jobsites to compare different hardware
and software arrangements and assess their impact on the results.
They selected three types of microphones: (1) an off-the-shelf
microphone; (2) a contact microphone; and (3) a multichannel
microphone array. Also, two different settings were chosen. In the
first setting, microphones were placed in the equipment cabin. In
the second one, microphones were installed on the jobsite near the
equipment. For monitoring operations of three types of equipment
that can damage the underground cables, Yang et al. (2015) adopted
linear prediction cepstral coefficients (LPCC), which train a SVM
model utilizing audio signals recorded by a microphone array. As a
follow-up study for enhancing the accuracy of sound classification
proposed in the aforementioned study, Cao et al. (2017b) imple-
mented extreme machine learning (ELM) using spectral dynamic
features to detect activities of four types of equipment. They used
background-noise-reduction algorithms to decrease the noises of
tunnel construction sites.

A construction jobsite with a complex and dynamic working
environment encompasses several types of simultaneously occurring

equipment work. Thus, several audio sources can be generated
during construction processes. Cheng et al. (2018) improved their
algorithm to be used for multiple machines. Sabillon et al. (2017)
also used audio to detect activities and utilized a Bayesian ap-
proach to predict the cycle times of construction equipment. In
this paper, only a multichannel microphone array has been used,
and the frequency magnitude and phase features were extracted to
train the SVM model. Another extension of that work is an esti-
mated cycle time for multiple days so as to generalize their results,
which were reported to have an accuracy rate as high as 90%. In
addition, Cho et al. (2017) proposed a frequency-domain-based
approach to classify sound patterns on three different construction
operations: concrete pouring, concrete grinding, and hammering.
They also showed how to visualize collected sounds data through
a building information modeling (BIM) model.

Zhang et al. (2018) also implemented a supervised machine-
learning algorithm to improve the performance of construction
sound detection systems. Even though they should be detected
and then analyzed separately for further activity detection, it
is still somewhat limited to collect different sound data simulta-
neously and classify the work types. To enhance the accuracy of
sound classification of multiple audio sources, it would be a cur-
rently promising way to adopt a microphone array that can
estimate the direction and distance of sound sources in 2D or
3D spaces (Jiang et al. 2011). This approach calculates a geomet-
rical relationship and estimated time delays among installed mi-
crophones to obtain directions and distances of multiple sound
sources in a site.

Table 4 provides overviews of existing studies regarding appli-
cations of utilizing sound to recognize construction operations.
This table summarizes the main objectives, number and types of
equipment studied, number of activities covered, devices used to
record audio, and the testbed settings. Further analyzing and com-
puting details about each study are illustrated in Table 5.

Table 4. Basic components of different audio-based activity recognition systems for construction workers

References Objectives Equipment quantity (single or multiple) Tools Microphone placement

Yang et al. (2015) Activity detection 3 types of equipment (single machine) Cross microphone sensor array
with 8 microphones

Installed on the jobsite
(distances of 3–72 m)

Cheng et al. (2016) Activity detection 4 types of equipment (single machine) Recorder (Tascam DR-05 2 GB) Installed on the jobsite
Cheng et al. (2017a) Activity detection 1 type of equipment (single machine) Recorder (Tascam DR-05 2 GB) Installed on the jobsite
Cheng et al. (2017b) 1. Hardware and software

requirements
11 types of equipment (single machine) 1. Off-the-shelf microphone

(Zoom H1 digital handy
recorder)

1. Microphones mounted on
board

2. Activity detection
2. Korg CM-200 clip-on contact
microphone

2. Installed on the jobsite

3. Multichannel microphone
array (xCORE-200)

Cheng et al. (2018) 1. Hardware and software
requirements

Equipment (multiple machines) 1. Off-the-shelf microphone
(Zoom H1 digital handy
recorder)

1. Microphones mounted on
board

2. Activity detection
2. Korg CM-200 clip-on contact
microphone

2. Installed on the jobsite

3. Multichannel microphone
array (xCORE-200)

Cao et al. (2015) Activity detection 4 types of equipment (multiple
machines)

Cross-microphone sensor array
with 4 microphones

Installed on the jobsite
(distances of 5–60 m)

Cao et al. (2017a) Activity detection 4 types of equipment (multiple
machines)

Four-element cross-layer
MEMS microphone sensor

Installed on the jobsite
(distances of 3–230 m)

Cao et al. (2017b) Activity detection 4 types of equipment (multiple
machines)

Cross-layer microphone sensor
array with 8 channels

Installed on the jobsite
(distances of 5–150 m)

Sabillon et al. (2017) 1. Activity detection Equipment (multiple machines) XMOS xCORE-200
multichannel array microphone

Installed on the jobsite
2. Cycle time estimation
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Kinematic-Based Methods for Activity Detection of
Construction Workers

Human activity recognition (HAR) is a time-series classification
problem with a variety of applications in different domains includ-
ing robotics, security, rehabilitation, pervasive computing, and en-
tertainment (Ren-Jye et al. 2018; Ranasinghe et al. 2016; Lara and
Labrador 2013). The rapid development of body-worn sensors and
mobile devices in the last decade has created new opportunities for
improving construction processes through ubiquitous and accurate
detection of construction workers’ activities. Among many appli-
cations, detecting and tracking workers’ activities can be useful
for safety monitoring, productivity measurement, ergonomic as-
sessment, and quality control. Similar to construction machinery
and heavy equipment, worker activities that take place on a con-
struction jobsite generate distinctive kinematic signals (e.g., body
acceleration, angular movement, and posture). Tables 6 and 7 pro-
vide an overview of recent studies regarding potential applications
of kinematic signals for recognizing and monitoring activities of
construction workers and equipment.

Image/Video-Based Methods for Activity Detection of
Construction Workers

Similar to applications utilizing computer-vision methods for rec-
ognizing construction machinery activities, it is possible to provide
information about worker activities at construction jobsites by
processing captured images and video files. Computer-vision algo-
rithms eliminate the need for attaching sensors to workers’ bodies,
which is a major advantage over kinematic-based methods.

Several studies have been conducted to detect human activities
such as walking, standing, sitting, and running. The same concept
could be utilized for detecting workers’ activities and gestures at
construction jobsites. Table 8 summarizes recent studies on worker
activity detection using images and videos.

Results and Discussions

As indicated previously, different automated activity recognition
techniques each have advantages and limitations and several factors
need to be considered when choosing an optimum solution for a
particular jobsite. A summary of these methods’ advantages and
limitations is presented in Table 9.

Other significant findings of this study are as follows:
• For audio- and kinematic-based methods, researchers have imple-

mented different types of machine-learning algorithms to detect
construction activities. SVM, ANN, decision trees, KNN, logistic
regression, naïve Bayes, and random forest have been used fre-
quently in this regard. Also, in recent years, neural networks and
deep learning have been used to recognize construction activities.
Recurrent neural network (RNN) is a deep learning model that
utilizes order dependence in sequence prediction problems such
as equipment activity recognition and tracking.

• Selecting proper features for training purposes is another impor-
tant aspect of developing an automated activity detection
system. Time-domain features (e.g., mean, median, peak, var-
iance, and standard deviation) and frequency-domain features
(e.g., fast Fourier transform (FFT) coefficients, energy, and en-
tropy) are frequently used by kinematic- and audio-based meth-
ods. However, CNN is a deep learning architecture capable of
automatically extracting features. Considering the limited scope
of applications for each sensing technology, using hybrid ap-
proaches and fusing results would be a good strategy to over-
come limitations of individual techniques. In a recent study,
both audio and kinematic data were fused, and results showed
an improved accuracy (Sherafat et al. 2019a, b).

• For computer-vision-based methods, it was reported that using
motion boundary histogram (MBH), higher accuracies can be
derived rather than using HOG and histograms of optical flow
(HOF) (Yang et al. 2016). It was shown that a HOG descriptor
leads to better results than a HOF descriptor (Gong et al. 2011).

Table 5. Overview of audio signal processing techniques used for activity detection of construction workers and tools

References Machine-learning algorithm Features Feature extraction characteristics Accuracy

Yang et al. (2015) SVM Linear prediction cepstral
coefficients (LPCC)

Frame length 175 ms (3,500 samples) Higher to 98%

Cheng et al. (2016) SVM STFT magnitudes Hanning windows size 512 Over 90%
1,024-point DFT
50% overlap

Cheng et al. (2017a) SVM STFT magnitudes Hanning windows size 512 Exceeds 85%
1,024-point DFT
50% overlap

Cheng et al. (2017b) SVM Time-frequency features Hanning windows size 512 Over 80% even
85% accuracy1,024-point DFT

50% overlap
Cheng et al. (2018) SVM STFT magnitudes Hanning windows size 512 Over 85%

1,024-point DFT
50% overlap

Cao et al. (2015) Single hidden-layer feedforward
neural network and extreme
learning machine (ELM)

Spectral dynamic features Hanning windows size 256 and 4,096
(50% overlap)

Up to 88%

Cao et al. (2017a) Algorithm developed in LabView
and MATLAB

Short frame energy ratio, the
concentration of spectrum
amplitude ratio, truncated energy
range, and interval of the pulse

Hanning windows size 256 (one-sample
shift for overlap)

Over 86%

Cao et al. (2017b) Artificial neural network using
the ELM approach

mel-frequency cepstral
coefficients (MFCCs) features

Hamming windows size 495 points
(50% overlap)

Up to 96%

Sabillon et al. (2017) SVM Frequency magnitude and phase
features

Hanning windows size 512 As high as 90%
1,024-point DFT
50% overlap

© ASCE 03120002-10 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2020, 146(6): 03120002 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

R
ez

a 
A

kh
av

ia
n 

on
 0

4/
08

/2
0.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Table 6. Basic components of different kinematic-based activity recognition systems for construction workers

References Objectives
Number

of workers
Number of classifications

(type of activities) Tools (sampling frequency)
Testing Environment

(setting)

Joshua and Varghese
(2010b)

Preliminary study on
automation of activity
sampling method

1 5 activities (masonry: fetch
brick, twist laying, fetch mortar,
spread mortar, and cut brick)

Single wired triaxial
accelerometer

Lab (waist)

[Motion node (GLI
Interactive)]
(60 Hz)
Laptop with a built-in
camera

Joshua and Varghese
(2010a)

Automating work-sampling
process

1 5 activities (masonry: fetch
brick, twist laying, fetch mortar,
spread mortar, and cut brick)

Single wired triaxial
accelerometer [Motion node
(GLI Interactive)]

Instructed and
uninstructed modes
(left and right sides of
the waist)(60 Hz)

Laptop with a built-in
camera

Cezar (2012) Discriminating between
different activities during
regular workdays

3 4 activities Smartwatch (25 Hz) Worker’s dominant hand
(hammering, sawing, sweeping,
and drilling)

Accelerometer and
gyroscope data

Khan and Sohail
(2013)

Activity recognition using a
single accelerometer system

44 9 activities Sparkfun IMU 3,000 fusion
board (ADXL345
accelerometer and

Naturalistic lab
environment (waist)

MotionProcessor
gyroscope)

Joshua and Varghese
(2013)

Evaluating the location of
accelerometers on a worker
for activity classification

4 11 activities (bricklaying) Triaxial accelerometer data
loggers with range of �6g
(40 Hz)

Two armbands and
to-abdominal belt

Yang et al. (2014) Detecting near-miss fall
incidents based upon IMU

2 5 activities (walking, squatting,
standing up, squatting down, and
static standing)

IMU sensor [SHIMMER 9
degree of freedom (DOF),
Shimmer] (51.2 Hz)

Laboratory experiment
(waist)

Lim et al. (2015) 1. Collect data of a worker’s
limbs

3 10 motions (activating sensor,
pause, walk, slip, walk, trip,
walk, pause, deactivating sensor,
and return)

Three-axis acceleration of a
smartphone (80 Hz)

Simulated construction
jobsite (left hip pocket in a
vertical position)2. Identify the occurrence and

type of near-miss event
3. Detect objects causing

unsafe conditions
4. Take corrective actions

Akhavian and
Behzadan (2016)

Designing and testing a
construction activity
recognition system

— 5 activities (hammering, sawing,
loading sections, turning a
wrench, into wheelbarrows,
pushing loaded wheelbarrows,
dumping sections from
wheelbarrows, and returning
with empty wheelbarrows)

All 3 axes (X, Y, and Z)
from accelerometer and
gyroscope (100 Hz)

Outdoor workspace
(upper arm)

Zhang et al. (2018) Propose an activity
recognition method using a
smartphone

9 8 activities (main activities
consisting of standing, walking,
squatting, cleaning up the
template, fetching andplacing
rebar, locating the rebar, banding
the rebar, and placing)

2 smartphones
(Invensense_MP67B)
(10 Hz)

Simulated floor-
reinforcing steelwork
(right wrist and upper
right leg)

Nath et.al (2018) Assessment of ergonomic
risks by detecting
construction activities

— Category 0: None Accelerometer, linear
accelerometer, and
gyroscope sensors

Field experiment that
resembles real-world
activities

Category 1: Lift/lower/carry
Category 2: Push/pull

Akhavian and
Behzadan (2018)

Extract duration of activities
for input modeling of discrete
event simulation (DES)

— 7 activities (subactivities of
preparing, transporting, and
installing)

Smartphone accelerometer
and gyroscope (100 Hz)

Outdoor environment that
resembles a small
construction jobsite

Ryu et al. (2018) Masonry action recognition
using a wristband

— 4 activities (spreading mortar,
bring and laying blocks,
adjusting blocks, and removing
remaining mortar)

Accelerometer embedded in
an eZ430-Chronos sports
watch (22 Hz)

Indoor masonry work
(wrist)

Yang et al. (2019) Evaluate steelworkers’
workloads

— 8 activities (standing, walking,
squatting, cleaning a template,
placing rebar, lashing rebar,
welding rebar, and cutting rebar)

Smartphone accelerometer
and gyroscope (10 Hz)

Laboratory (wrist and leg)

Lee et al. (2019) Channel state information
(CSI)-based human activity
recognition

— 4 activities (walking, eating,
typing, and no-activity)

AC1750 MU-MIMO gigabit
router (Linksys) was used
for the access point (AP) and
a Lenovo T400 laptop for
the receiver

Wood-frame apartment
and a reinforced
concrete-frame apartment
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Table 7. Overview of kinematic signal processing techniques used for activity detection of construction workers and tools

References Machine-learning algorithm Features
Feature extraction
characteristics Accuracy

Joshua and Varghese
(2010b)

— Time-domain features (arithmetic mean,
median, mean absolute deviation, standard
deviation, and variance)

Data segment lengths
of 2, 4, and 4.23 s
(50% overlap)

—

Joshua and Varghese
(2010a)

1. Naïve Bayes Basic time-domain features (peak, mean,
variance- correlation, and energy)

Data segment lengths
of 2, 4, and 4.23 s
(50% overlap)

80%
2. Decision trees (J48)
3. Multilayer perceptron

Cezar (2012) 1. Naive Bayes (NB) 46 time and frequency features Window size of 40
samples (1.6 s)

91%
2. Multinomial logistic regression (MLR)
3. Multi-SVM
4. Linear discriminant analysis (LDA)
5. Quadratic discriminant analysis (QDA)

Khan and Sohail
(2013)

17 classifiers Arithmetic mean, correlation, standard
deviation, fast Fourier transform energy,
autoregressive coefficients, data entropy,
FFT entropy, discrete cosine transform
(DCT) energy, and first four dominating
FFT coefficients along three axes of the
accelerometer

A window of 512
samples, i.e., 5.12 s

94%

Joshua and Varghese
(2013)

Decision tree 1. 33 time-domain features (mean, median,
peak, mean absolute deviation, variance,
first-quartile, and third-quartile to measure
central tendency and variability, and
correlation)

Segments of 6.4 s (256
samples)

77%

2. Frequency-domain features (DC
component, entropy, and energy)

Yang et al. (2014) 1. Support vector machine 38 features:mean, standard deviation,
peak, correlation, spectral entropy, and
spectral centroid (for both the
accelerometer and the gyroscope)

50% overlap 91.10%
2. One-class support vector machine

Lim et al. (2015) ANN Single vector magnitude feature (mean,
standard deviation, and peak)

Windows size of 3 s
(50% overlap)

94%

Akhavian and
Behzadan (2016)

1. Artificial neural network (ANN) Mean, maximum, minimum, variance,
RMS, IQR, and the correlation between
every two pairs of axes and spectral energy
and entropy

Windows size of 1.28 s
(50% overlap)

Around 80% in
the best case2. Decision tree

3. KNN
4. Logistic regression
5. SVM

Zhang et al. (2018) CART algorithm of a decision tree Five common time-domain features,
namely mean, standard deviation, IQR,
and skewness

Time window of 6.4 s
(50% overlap)

Up to 94.91%

Nath et al. (2018) SVM Statistical features from each sensor
(mean, minimum, maximum, standard
deviation, IQR, skewness, kurtosis, mean
absolute deviation, and fourth-order
autoregressive coefficients)

1 s (180 data points),
2 s (360 data points),
and 3 s (540 data
points) with a 50%
overlap

Up to 90.2%

Akhavian and
Behzadan (2018)

1. ANN Statistical features such as mean,
minimum, maximum (i.e., time-domain
features), and signal entropy and energy
(i.e., frequency domain)

Windows size of 1.28 s
(50% overlap)

—
2. Decision tree
3. KNN
4. Logistic regression
5. SVM

Ryu et al. (2018) 1. KNN 1. 8 time-domain features (mean, standard
deviation, maximum, minimum, range,
skewness, kurtosis, and correlation)

Window size of 4 s
(50% overlap)

Up to 88.1%
2. Multilayer perceptron
3. Decision tree
4. Multiclass SVM 2. 2 frequency-domain features (energy

and entropy)
Yang et al. (2019) SVM Three-axis acceleration, three-axis angular

rotation, mean, variance, standard
deviation, maximum, minimum, range,
RMS, and correlation

— Up to 99.25%

Lee et al. (2019) SVM and earthmover’s distance (EMD) 6 features of CSI amplitudes (average,
standard deviation, 25th percentile, 75th
percentile, maximum, and median absolute
deviation)

Sampling frequency of
10 packets per second

Up to 94.38%
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Table 8. Overview of kinematic signal processing techniques used for activity detection of construction workers and tools

References Objectives Methods used Action detector
Testing

environment (setting)

Gong and Caldas
(2009)

Developing a model to generate
productivity information from
construction operations videos

Haar waveletlike simple
features (edge and line features)

Intel Open Resource Computer
Vision

Stadium construction
jobsite

Gong et al. (2011) Classifying worker actions Bag-of-video-feature-words
and Bayesian learning methods
with the use of HOG and HOF
indicators

Naïve Bayesian classifier and
probabilistic latent semantic
analysis (pLSA)

Real projects

Han et al. (2013) Motion analysis of construction
operations using Kinect motion
capture data

Kernel principal component
analysis (Kernel PCA)

Dynamic time warping (DTW) Lab experiments

Khosrowpour et al.
(2014a)

Analysis of worker activities
using RGB+depth sensors

Kernel density estimation
(KDE) model and GMM

SVM and HMM Lab settings and actual
construction site

Khosrowpour et al.
(2014b)

Analysis of interior construction
operations using RGB+depth
sensors

KDE model SVM and HMM Lab settings and actual
construction site

Liu and
Golparvar-Fard (2015)

Crowdsourcing construction
activity analysis

HOG and HOC features SVM Real-world jobsites

Yang et al. (2016) Worker action recognition using
dense trajectories method

HOG, HOF, and motion
boundary histogram (MBH)

Multiclass SVM with nonlinear
radial basis function (RBF)
kernel

Real projects

Luo et al. (2018) Monitor and analysis of
installing reinforcement
activities in construction

RGB, optical flow, and gray
stream

Improved CNN Real projects

Table 9. Qualitative comparison of construction activity detection methods

Method Advantages Disadvantages

Kinematic-based
methods

1. Using RFID tags is a beneficial factor for large-sized construction
because these tags are capable of communicating for long
distances up to 100 m.

1. They require a reasoning mechanism to detect the location of
tagged construction items (Torrent and Caldas 2009).

2. They also work without the need for lines of sight. In contrast to
vision-based tools that need a line of sight for recording images or
videos, these tags can operate easily without any lines of sight.

2. RFID tags can be easily jammed or disrupted due to the
presence of other wireless fidelity (Wi-Fi) networks.

3. Accelerometers have reasonable accuracy and power
consumption (Hanna 2001).

3. RFID reader might collide when the signals from several
readers overlap with each other.

4. In contrast with image sensors, accelerometers are robust and
resilient in trying conditions (Joshua and Varghese 2010a).

4. RFID tags might collide when several tags are present in a
congested area.

5. MEMS devices need to be directly attached to the equipment
or worker, which are not applicable to some types of tools.
They also might either hinder or limit workers’ movement,
which is intrusive for operators.

6. There would be a need for many of these devices in the jobsite,
which makes this method costly.

Vision-based
methods

1. They can provide semi-real-time information (Cheng et al. 2016). 1. Because these devices need light to record images/videos,
they are very sensitive to environmental factors such as
illumination, dust, snow, rain, and fog. They can perform only
when there is neither darkness nor direct sunlight (except for
thermal cameras).

2. Recorded images/videos can be stored as reliable documentation
and be used for future needs (Cheng et al. 2016).

2. A network of cameras is required to cover the whole jobsite
(Cheng et al. 2017a);

3. There would need to be an absence of any obstacles between
the camera and equipment/workers.

4. Crowded and congested jobsites with high noise levels
(e.g., moving backgrounds and varying light conditions) are
hard to analyze using these methods (Hanna 2001; Akhavian
and Behzadan 2014).

5. These methods require large storage sizes to hold the image
and video data. Also, these methods are relatively more
computationally intensive than other options (Akhavian and
Behzadan 2013b).

6. Privacy issues might prevent these devices from being utilized
in the jobsite. Some workers might be uncomfortable being
continuously monitored.

7. These devices are relatively expensive to be placed on the
jobsite.
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Also, implementing CNN and crowdsourcing labeling techni-
ques have been recommended to improve results (Kim et al.
2018c). MBH feature descriptor is capable of providing higher
accuracy compared with HOG and HOF (Yang et al. 2016). A
similar study showed that a HOG descriptor leads to better
results compared with a HOF descriptor (Gong et al. 2011).

Evaluation of the Effectiveness of Different Methods

Audio-based, kinematic-based, and vision-based methods detect
and recognize different types of activities on the jobsite. Although
beneficial, the list of activities these methods generate over time is
not sufficient for project managers to acquire an in-depth under-
standing of the status of the entire project, take necessary preven-
tive and corrective actions, and perform cost and schedule analysis.
Subsequently, further processing will be required to convert the raw
chronological list of activities into an effective performance mon-
itoring and control system. The following two items are deemed as
necessary components of a reliable construction equipment perfor-
mance monitoring system: (1) calculating value-adding versus
non-value adding and active versus idle times; and (2) estimating
quantities of accomplished work.

Although a chronological list of activities, as well as productiv-
ity rates and quantities of completed work by a worker or a piece of
equipment, can provide very useful information for jobsite person-
nel, it does not suffice for necessary analysis and decision-making
tasks at higher management levels. Project managers and company

owners need to monitor and evaluate the performance of their proj-
ects (and thus all included machines and workers) as a whole. For
successful implementation of each of these methods on the jobsite,
five major performance metrics must be considered that include
(1) range of activities it can cover, (2) appropriate temporal, special,
and weather conditions, (3) required devices (estimated total cost),
(4) computational time, and (5) accuracy.

Table 10 provides a comparison of implementation factors for
these three methods, based on all the papers studied here. In this
table, the estimated cost is calculated based on the number of work-
ers and machines on the jobsite (small-sized or big-sized jobsite),
the number of devices, and the cost of each device. For example, for
a small-sized jobsite with five workers and five machines, 10 basic
accelerometers (each costing about $10) are required, which leads
to a total cost of $100. The level of accuracy column shows the
range of accuracies reported by the previous papers. The computa-
tional time shows how fast the method can run.

In Table 11, different jobsite conditions are considered for
different methods, and the letter X indicates that the method is prac-
tical in that specific condition.

In Table 12, different methods are compared based on their
capability of recognizing activities and subactivities (actions).
As previously mentioned, equipment/worker activities are ongoing
processes with respect to time, whereas actions are single efforts.
When actions are grouped together they form an activity. Some
methods are limited due to their inability to differentiate between
different actions.

Table 9. (Continued.)

Method Advantages Disadvantages

Audio-based
methods

1. In construction jobsites, some activities generate sounds, making
them recognizable by audio sensors (such as drilling and
excavating).

1. They are not suitable for noisy and crowded jobsites.
However, some denoising algorithms exist, which can
decrease the noise effects, but noise somehow affects the
accuracy of activity detection.2. There is no need for microphones to be placed on the equipment

cabin or be attached to the workers’ clothing. 2. Audio-based methods are not applicable to some types of
equipment such as tower cranes, which don’t generate sounds.3. An equipment operator’s skill in controlling and moving the

equipment does not significantly affect the sound generated by
the equipment.

4. A microphone is capable of recording sounds in 360°.
5. In contrast to vision-based methods, the presence of obstacles

does not affect the quality of recorded data.
6. In contrast with vision-based methods, there is less of a need for

computational time and storage space.
7. One microphone is enough for a relatively large area.
8. In contrast with kinematic-based methods, it can record the audio
of multiple machines.

Table 10. Comparison of implementation factors for construction activity detection methods

Method
Devices [estimated
system cost ($)] Computational time Level of accuracy

Kinematic-based methods Accelerometer, gyroscope, smart watch, or mobile phone
(small-sized jobsite: $100–$1,000; medium-sized job-site:
$1,000–$10,000)

Fast (real-time) Higha

Vision-based methods Optical cameras (small-sized jobsite: $1,000–$10,000;
medium-sized jobsite: $10,000–$100,000)

Moderate (semi-real-time) and
fast (real-time)

Rainy or windy (lowb and
moderatec), and normal weather
(moderate and high)

Audio-based methods Single microphone or microphone array (small-sized jobsite:
$300–$3,000; medium-sized jobsite: $3,000–$30,000)

Fast (real-time) Very noisy (low), noisy
(moderate), and not noisy (high)

aModerate ¼ 60%–80%.
bLow ¼ <60%.
cHigh ¼ 80%–100%.
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Also, based on the papers reviewed, these methods have better
accuracies for specific types of equipment and activities. Table 13
lists worker activities and equipment types that are recognizable or
unrecognizable by each method.

Conclusions and Future Research Directions

This paper contributes to the body of knowledge by providing a
concise overview of recent studies about automated activity recog-
nition of construction resources (equipment and workers). The
existing methods fall into three major categories: audio-based,
kinematic-based, and computer vision–based techniques. The ad-
vantages and limitations of each method have been extensively
discussed in the previous sections.

For future research directions in this area, four important points
should be taken into account by researchers:
• The majority of the current studies are at the proof-of-concept

stage and utilize low or little ground-truth data. These studies are
often based on a limited number of data sets (fewer than 10
types of equipment/single worker type) and only partially cover
complex construction jobsites. The number of implemented
data-capturing sensors (e.g., microphones or digital cameras)
is also limited. Providing a data set of images and videos

Table 11. Comparison of jobsite conditions factors for construction
activity detection methods

Conditions
Kinematic-based

methods
Vision-based
methods

Audio-based
methods

Day × × ×
Night × — ×
Rainy × — —
Snowy × — ×
Cloudy × — ×
Windy × × —
Small-sized jobsite × × ×
Medium-sized jobsite × × ×
Large-sized jobsite — × —
Indoor environment × × ×
Outdoor environment × × ×
Noisy jobsite × × —
Congested jobsite × — ×
Single equipment or
worker

× × ×

Multiple equipment or
workers

× × ×

Need for several
devices

× × ×

Need for attachment × — —

Table 12. Ability to recognize activities and actions of equipment and worker for each method

Method Equipment activities Equipment actions Worker activities Worker actions

Kinematic-based
methods

Engine off, idling, excavating,
loading, and hauling, and among
others

Moving forward/backward and
lowering/raising the arm, and
among others

Idling, walking, hammering,
drilling, sawing, spreading mortar,
and bricklaying, and among others

Raising/lowering hand
and looking right/left

Vision-based
methods

Engine off, idling, excavating,
loading, and hauling, and among
others

Moving forward/backward and
lowering/raising the arm, and
among others

Idling, walking, hammering,
drilling, sawing, spreading mortar,
and bricklaying, and among others

Raising/lowering hand
and looking right/left

Audio-based
methods

Engine off, idling, excavating,
loading, and hauling, and among
others

Moving forward/backward and
lowering/raising the arm, and
among others

Hammering, drilling, and sawing,
and among others

Incapable

Table 13. Worker activities and equipment types that are recognizable or unrecognizable for each method

Method Recognizable equipment Unrecognizable equipment Recognizable worker activities
Unrecognizable worker

activities

Kinematic-based
methods

Any heavy equipment with
articulated moving parts such as
excavator, loader, vibrator, and
dump truck

Any heavy equipment with no or
minimal articulated moving
parts such as paver, forklift,
and scissor lift

Any activity involving the
considerable movement of
human body parts and repetitive
in nature such as working with
carpentry tools, climbing a
ladder, and tying rebar

Any activity that does not
involve the considerable
movement of human body parts
or repetitive in nature such as
welding

Vision-based
methods

Any type of equipment
assuming that certain
environmental conditions exist

May not work in dark/occluded or
extremely dusty environments

Any scenarios where there are
certain visually recognizable
postures/features for workers.
Interaction of workers with
surrounding material/tools
helps with inference of the
actions

Any activity that does not
include visually distinguishable
features

Audio-based
methods

Any equipment that generates
sound: bulldozer, backhoe,
excavator, loader, compactor,
concrete truck, vibrator, dozer,
jackhammer, compactor, and
dump truck

Any equipment that does not
generate sound: paver, forklift,
scissor lift, boom lift, tower crane,
tele handler, skid steer, grader,
and scraper

Any worker activity that
generates sound: hammering,
welding, sawing, and drilling

Any worker activity that does
not generate sound: masonry,
bolting, steel work, bricklaying,
walking, and standing
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requires a large server to store the data, which in part can prevent
the usage of vision-based methods for most projects. Larger-
scale experiments that cover the entire construction jobsite with
multiple workers and machines operating simultaneously would
help to better understand the real added value of these methods
in practice.

• In line with the previous comment, the current methods for ac-
tivity recognition of construction resources are not yet at the
commercialization and technology-transfer level. There are sev-
eral location tracking applications, such as Fleet and Equipment
Manager, that allow for tracking equipment locations. However,
to the authors’ knowledge, there is no commercialized applica-
tion capable of detecting and recognizing equipment activities
and providing useful performance measurements to the construc-
tion managers. In other words, considering Fig. 1, the first level
of the automated construction monitoring system (i.e., spatial
location tracking) has been commercialized, but the second level
(i.e., activity recognition) still requires more precise and general-
ized methods to convert to a commercialized application.

• Current studies are based on implementing a single method for
automated activity detection of workers and machines. Although
effective, a single method cannot overcome all challenges it may
face in a complex construction jobsite and provide promising
output for all possible scenarios. As a result, developing hybrid
methods using fusion techniques that are capable of implement-
ing multiple methods and combining results for improving the
overall performance would be extremely useful.

• The construction industry is rapidly changing and moving from
jobsites to factories where a repetitive and under-control envir-
onment could be achieved. Implementing activity detection and
monitoring systems discussed in this paper will generate more
reliable results in such environments.
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