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A B S T R A C T

Although heavy equipment is an indispensable resource in many construction projects, it is often underutilized. Inefficient usage patterns and frequent idling
contribute to increased emissions and project costs. Efforts to improve usage patterns often begin with activity tracking. Recent research into automated activity
tracking has leveraged sensing devices and Internet-of-Things (IoT) frameworks to power machine learning models that can predict the behaviors of monitored
equipment. However, shallow machine learning models require complex manual feature engineering that could be further automated with more recent deep learning
approaches. Deep learning approaches not only increase automation but also promise improved accuracies by avoiding biases introduced by manual feature design.
This paper proposes a construction equipment activity recognition framework that uses deep learning architectures to predict the activities of heavy construction
equipment monitored via accelerometers and applies this framework to a roller compactor and an excavator performing real work. The performance of a simple
baseline convolutional neural network (CNN) is compared to a hybrid network that contains both convolutional and recurrent long short-term memory (LSTM)
layers. The hybrid model outperforms the baseline model in all instances studied. In the task of classifying the activities of the roller compactor, the hybrid model
achieves a validation accuracy of 77.1% when presented with six activities and a validation accuracy of 96.2% when distinguishing only direction. In the task of
classifying seven activities of the excavator, the hybrid model achieves a validation accuracy of 77.6%, with some confusion between isolated activities and a Various
category that includes elements of the isolated activities. With the Various category removed, the hybrid model achieves a validation accuracy of 90.7%. This study
demonstrates that deep learning frameworks can model the activities of construction equipment with high accuracy. In particular, this work shows that convolutional
and LSTM layers can each form effective parts of deep learning models that characterize equipment activities based on accelerometer data, and furthermore that
these components can produce more effective models when combined. The findings of this study can be leveraged by researchers and industry professionals to
develop reliable automated activity recognition systems for tracking and monitoring equipment performance and for measuring the productivity and the efficiency of
the work performed.

1. Introduction

The architecture, engineering, and construction (AEC) industry is
increasingly investing in disruptive technologies. Technological ad-
vancements combined with data analytics enable enhanced design,
planning, and construction [1]. These tools can be leveraged to over-
come longstanding AEC challenges such as schedule conflicts, budget
overruns, and risk management. Effective applications of the right
technologies can produce measurable gains in productivity, sustain-
ability, and safety over the course of a project. Automated tracking and
monitoring of resources is a good example of one application of tech-
nology that enables these improvements.

According to industry reports, approximately 35% of the total
working time across the entire construction workforce (i.e. 14 h/week
on average, including office and field workers) is consumed performing
non-productive tasks such as searching project information, solving
conflicts, waiting for instructions, or wasting time performing poorly
planned activities [2]. At a productivity rate of only 43%, the

construction industry lags behind other industrial sectors such as
manufacturing, which has more than double the productivity at a rate
of 88% [3]. It is vital that the construction industry overcomes this
problem. Research into systems that leverage new technologies and
novel methodologies to increase awareness of performance issues and
enhance productivity is well underway. Some researchers focus on the
problem at a higher level. For instance, Cheng et al. [4] developed an
automated system that monitors the overall progress of a project's ex-
ecution. Others focus on tracking resource usage at the level of in-
dividual workers or at the level of individual pieces of equipment. To
that end, Akhavian and Behzadan [5] implemented a motion sensor-
based tracking system to study the productivity of individual con-
struction workers performing a variety of tasks. Cheng et al. [6] noted
that productivity rate tends to vary across phases of a construction
project, an insight that many construction practitioners do not consider
very often. Similarly, Wideman [7] discovered that, while productivity
rates across different sectors of the construction industry are incon-
sistent, productivity generally tends to be lowest during the initial
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phases of any construction project and grows substantially as it nears
completion. Heavy construction, however, suffers from poor perfor-
mance: it showed the lowest productivity growth in comparison with
other construction in single-family, multi-family, and industrial areas
[8]. The utilization of heavy construction equipment is heavily corre-
lated with the construction industry's productivity problem. In this re-
gard, Gong and Caldas [9] determined that usage of heavy construction
equipment is most intense during the initial phases of construction
projects. Therefore, giving special attention to heavy construction
equipment in productivity analysis is critical for seeking improvements
in resource management. Monitoring heavy equipment activities aids
construction managers in their efforts to minimize the amount of time
that their fleets spend performing non-value-adding activities. Reducing
such activities will increase productivity and reduce the environmental
impact associated with running such machines.

Automated identification of the activities performed by the different
construction resources has been the subject of many recent studies. The
overarching goal is often to develop an Internet-of-Things (IoT) fra-
mework that uses machine learning techniques to distinguish different
activities performed by construction workers and/or construction
equipment, based on data collected from various sensors. Human ac-
tivity recognition (HAR) has been extensively explored in other fields
[10] as well as in the construction literature [11]. However, the nature
of activities performed by heavy construction equipment, the different
degrees-of-freedom of their various articulated parts, and the rugged
terrains on which they operate pose additional challenges. The present
journal paper develops a state-of-the-art methodology for construction
equipment activity recognition by combining the cost-effectiveness,
unobtrusiveness, and reliability of wireless inertial measurement units
(IMUs) suggested by Akhavian and Behzadan [12] with the high ac-
curacies and unprecedented degrees of automation offered by modern
deep learning techniques. This methodology lays the foundation for
future work that will extend the models to predict the greenhouse gas
(GHG) emissions associated with construction equipment's activities.
Since deep learning techniques automate feature extraction, they lead
not only to higher classification accuracies but also to models that are
simpler to adapt to different kinds of equipment. This topic has been
gaining traction in the construction research community very recently
which demonstrates the feasibility and effectiveness of the approach
[13–15].

The previous studies in this are focused on vision-based activity
recognition or evaluation of models trained with synthetic data such as
those developed using data augmentation methods. Such studies have
established a compelling precedent on the importance of this topic. The
presented paper differs from the past studies since it is an early attempt
to deploy deep learning using inertial sensor data collected from more
than one piece of equipment in an uncontrolled environment. Recent
studies in this area are reviewed in detail in the Research Background
section where the contribution of the research presented in this paper is
highlighted in more detail.

The remainder of this document is organized as follows: in the next
section, a comprehensive literature review is presented to outline the
latest research findings on the use of sensors for activity recognition and
analysis. Next, the research methodology and data collection setup are
described. Results are then presented for different types of equipment.
Finally, a detailed discussion of the results is provided, conclusions are
drawn, and future research directions are outlined.

2. Research background

2.1. Sensing approaches for activity recognition

Traditionally, construction equipment performance is recorded
manually by direct observation onsite. This manual method of mon-
itoring could be subject to error and inefficiency [16]. As such, there is
a great deal of research focused on automating the monitoring of

construction workflows. Most automated construction equipment
monitoring approaches rely on one of three broad categories of sensor
modalities. The first class of sensing techniques employs motion sensing
devices such as single accelerometers [17] or IMUs [12]. The second
class of sensing techniques employs cameras to capture video streams,
which are processed using computer vision algorithms [18]. Sometimes
the cameras are stationary, while other times they move along with the
equipment being tracked. A third class of sensing approaches uses mi-
crophones to map different tasks to audio signatures produced by ma-
chines while they work [6]. The latter two approaches can yield pro-
mising results; however, the chaotic nature of construction jobsites
tends to disrupt them. Cameras struggle to maintain line of sight, and
sound sensors (i.e. microphones) struggle to pick out signal amidst
obstructions and background noise. There are some other technologies
such as vehicle health monitoring systems (VHMS) embedded in newer
construction equipment by the original equipment manufacturer (OEM)
that provide accurate performance tracking. However, retrofitting old
equipment with these systems can be costly and subject to significant
compatibility problems [19,20]. Real-time locating systems (RTLS)
based on global positioning system (GPS) and ultra-wideband (UWB)
technologies are also options for tracking construction resources. These
technologies have been used to monitor everyday activities in natural
contexts, as well as the activities of nursing personnel [21,22]. In
construction, such technologies have been leveraged to extract queuing
properties from heavy construction operations and to assess real-time
safety risks at hydropower construction sites [23,24]. Unfortunately,
these systems cannot provide direct insight into complex articulated
activities carried out at particular locations, as they are only aware of
high-level location information.

Given the drawbacks of other sensing approaches, motion sensing
techniques are an increasingly popular option. IMUs are inexpensive,
easy to obtain, and compact enough that they can be mounted on
construction machinery without any complicated procedures or costly
modifications. Compared to lone accelerometers, IMUs offer the addi-
tional advantage of integrating complementary sensors like gyroscopes
and magnetometers that can provide a fuller picture of the monitored
activities. IMUs have been applied successfully to human activity re-
cognition tasks such as the Joshua and Varghese [17] study of mason
workers' productivities and the Akhavian and Behzadan [5] study of
construction workers' activities using smartphone sensors. In other
studies, such as the accelerometer-based study of three excavator ac-
tivities by Ahn et al. [25] and the IMU-based front loader study by
Akhavian and Behzadan [12], motion sensing devices were shown to be
viable sources of data for construction equipment activity analysis. The
methodology developed here builds on this prior work but achieves
enhanced results because of the differences detailed in the following
sections.

2.2. Machine learning approaches for activity recognition

Deep learning models leverage many cascaded layers of nonlinear
information processing to fit patterns in input data with much greater
capacity than traditional machine learning models [26]. Human ac-
tivity recognition frameworks have benefitted enormously from this
new technology. Yang et al. [27] showed convolutional neural net-
works (CNNs) can accurately classify the activities of human subjects.
Ordoñez and Roggen (2016) reached a new state of the art for distin-
guishing complex human activities by developing a long short-term
memory (LSTM) network. Both of these models were developed using
inertial sensor readings. One of the most compelling advantages that
deep learning models offer over their shallower counterparts is the
potential for automatic feature extraction. In traditional machine
learning models, feature selection is a heuristic process with lots of trial
and error and human-guided design. Such processes can cut out features
that might be critical before the model ever sees them or present the
data in such a way as to confer the biases of their designer to the trained
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model [28]. By employing expressive deep learning models that avoid
such biases, the work presented here is able to achieve unprecedented
accuracies in classifying many complex activities of heavy machinery
despite the added challenge of working with machines performing real
work in hectic, live construction sites.

2.3. Deep learning approaches for construction equipment activity
recognition

Considering the advantages provided by deep learning algorithms
versus shallow models, their application in construction activity re-
cognition has been explored very recently by some researchers. In one
study by Kim and Chi [14], excavators performing earthmoving op-
erations were subject to vision-based activity recognition. Models
containing the Faster Region-proposal Convolutional Neural Network
(Faster R-CNN) developed by Ren et al. [29] and Double-layer Long
Short-Term Memory (DLSTM) layers were trained on data collected in
experimental settings. The methodology resulted 90.9% precision and
89.2% recall rates. Another vision-based research study used LSTM
networks to identify construction entities and their activities by fo-
cusing on spatial states and attentional cues [13]. These studies offer
promising solutions in construction environments where vision-based
methods can be applied. The presented research, however, develops
models on inertial sensors that can be used in more varied construction
environments and extends the methodology to more than one type of
equipment.

In another study, Rashid and Louis [15] proposed time-series data
augmentation to generate synthetic training data. Their work suggests
that time series data augmentation can greatly improve the perfor-
mance of construction activity recognition models dealing with other-
wise limited training data. However, their study focuses on the effects
of data augmentation on an LSTM-based model without considering the
possible effects of convolutional neural network layers like the present
study. Additionally, their work was performed in a controlled en-
vironment on a single type of equipment. The work presented here
builds upon the findings of an earlier research project by the authors
[30] and studies two kinds of equipment performing real work.

3. Data collection

All data collection sessions involved construction equipment per-
forming real work without any special directions. The first data col-
lection session focused on a BOMAG BW 145PDH-3 single drum vi-
bratory roller compactor executing landscaping tasks and working on a
driveway for a hotel construction project in San Jose, California. The
second data collection session focused on a CAT 328D crawler ex-
cavator digging a trench at a sewage treatment plant in Pinole,
California. Both sessions were recorded on video using a Logitech C270
webcam; however, the videos were used only for data annotation since
the aim of the data collection is to develop activity prediction models
dependent only on accelerometer readings once trained. Two
MyoMotion 684 accelerometer sensors by Noraxon were mounted on
different movable of parts each machine studied [31]. To collect
readings in real-time, the sensors communicated with a nearby laptop
outfitted with a radio antenna. The sensor kit included software to
synchronize the sensor readings with the recorded video, which was
critical for labeling the data accurately based on the activities observed
in the video. The setup used for data collection is shown in Fig. 1.

In both data collection sessions, the first sensor was placed inside
the cabin on the dashboard. In the roller compactor data collection
session, the second sensor was secured to the roller's support arm; in the
excavator data collection session, the second sensor was attached to the
excavator arm near the bucket. Fig. 2 shows the sensors' placements on
each piece of equipment studied.

The sensor in the cabin was meant to capture overall movements of
the equipment without too much disturbance from the articulations of

its arm; the sensor placed on the arm was intended to focus on the
articulations of the arm which are of particular relevance to the various
activities studied. The different parts of the data collection process in-
cluding the laptop and the receiver, the sensors attached to the
equipment body streaming motion data, and the video recording were
all coordinated synchronously for later data labeling and analysis. After
being attached to the equipment, the sensors were calibrated to re-
orient their three axes of motion detection and eliminate considerations
of their physical orientations (e.g., possibly upside down).

Each sensor provided three channels worth of acceleration data –
one for each of the x, y, and z axes – and recorded each channel at
100 Hz (100 readings per second). Using two three-axis accelerometers
recording motions in each axis at 100 Hz in each experiment produced
six channels of 116,536 sensor readings describing 20 min of compactor
activity and six channels of 173,600 sensor readings describing 30 min
of excavator activity. These readings were captured in a CVS file for
further processing.

The video recording was synchronized to the sensor data via soft-
ware running on the laptop. The activities performed in the video re-
cording were manually labeled, and these activity labels were added to
the CSV file containing the accelerometer data based on time stamps,
since those readings where synchronized with the video. The resulting
CSV file consisted of all of the accelerometer readings with activity
labels at each time step, taken to be the ground truth activity labels. The
data in the CSV files were split into training and validation subsets and
further processed as detailed in the Data Analysis section.

4. Methodology

Prior work established the state of the art in human gesture re-
cognition using a neural network design operating on data from various
sensors called DeepConvLSTM [32]. The work presented here builds off
this work, adapting the model to the task of predicting construction
equipment activities from accelerometer readings. Although intuition
may suggest the problems have a lot in common, the movement pat-
terns of heavy machinery are quite different from those of human
subjects making typical gestures. Some modifications were necessary,
but the major principles of the DeepConvLSTM architecture do in fact
translate well to the construction activity domain. That is, combining
convolutional layers to extract locally correlated features from sensor
data with long short-term memory (LSTM) layers to process evolutions
of those features across time is an effective paradigm for construction
equipment activity recognition. Fig. 3 shows an overview of the ap-
proach developed here.

Typically, an LSTM uses fully-connected networks instead of con-
volutional networks within its internal networks, although there is
some research that uses convolutional networks within an LSTM [33].
That work was also shown to benefit from convolutional structures, but
the work presented here did not study a model featuring convolutional
structures inside LSTMs. Instead the convolutional layers are preceding

Fig. 1. (a) The Noraxon sensor set: 1. Radio antenna 2. MyoMotion sensors 3.
Logitech C270 webcam and (b) Data collection underway at an actual jobsite.
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the standard LSTM layers. Fig. 4 illustrates differences between the
structures of a fully-connected network and a convolutional network.

Because a fully-connected network has a completely filled-in com-
putation graph, it is theoretically possible that it could learn the same
weights as a convolutional network and therefore extract the same
features. However, in practice the reduced connections and weight
sharing in a convolutional neural network encourage the model to learn
patterns related to features with strong local correlations (i.e. samples
near each other in time are more likely to contribute to a single fea-
ture). Convolution is explained in more detail after the next section.

4.1. Data analysis

Models were trained and validated on disjoint subsets of the data.
Validating on data not seen during training provides insight into real-
world predictive power. Across the data collected, the final 20–28% of
sensor readings were set aside for validation; the rest of the data were
used for training. Care was taken so as to split the data from each data
collection session into two contiguous time series (i.e. sensor readings
that were taken in order without any time gap between them) preser-
ving similar distributions of activity labels across the partitions. In
order for the learning task to be feasible, it is critical that the data used
for prediction (i.e., the validation sets) have statistical properties si-
milar to the data used to train the models.

For the roller compactor data, the training set consisted of the first
92,728 contiguous samples while the validation set consisted of the
remaining samples. Some activity labels (Idle and Off) were too rare in
the collected data to appear in both the training and validation sets. As
these activities occurred only during the first 1040 samples and during
the last 8017 samples of the data, it was easy to drop them without
disrupting the time series. Fig. 5 plots the activities the roller compactor
performed during the data collection session. In the full problem, all six
activity classes shown in the white and blue regions were considered;
however, separate models were also trained with different combina-
tions of activities combined into a single category to study the simpli-
fied subproblems of dealing only with the machine's movement direc-
tions and dealing only with the machine's vibration settings in isolation.

It was then evaluated on a subset of the validation data excluding all
frames labeled Various, as well as on a subset additionally excluding the
first 14,335 validation frames labeled Idle to rebalance the class dis-
tribution, which shifted significantly upon removal of the Various
frames. The model was able to identify the Idle activity with nearly
perfect accuracy, so the rebalanced scenario posed a more realistic
challenge.

For the excavator, the first 125,165 contiguous samples were used
for training, and the remaining 48,435 samples were used for valida-
tion. Fig. 6 depicts the data used for the excavator experiment. Tran-
sitions between activities in this dataset were much more frequent than

Fig. 2. The locations of the accelerometers installed on the studied machines.
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in the roller compactor dataset. No samples were dropped; however, in
order to consider the subproblem of identifying only the excavator's
isolated activities without the confusion caused by the Various activity
category, the model was additionally trained from scratch on the subset
of the training frames with activity labels other than Various (refer to
the paragraph after the next one to see how frames are computed).

It is worth mentioning here that the choice of the activity classes
selected for classification and prediction in this study is based on two
main considerations. First, activities with a high level of detail are more
difficult to distinguish by machine learning models. Therefore, a rather
high level of detail (LoD) is considered here as a technical complexity to
evaluate the performance of the developed algorithm. If the model is
successful in detecting and distinguishing among fine-grained activity
labels such as Rotating (Left) and Rotating (Right) or Forward (high) and
Forward (low), for example, one can use the attributes of these activities
to get insight into the characteristics of coarser-grained activities. For

instance, if activities a and b are performed in a row, a new activity c of
a coarser-grain and comprising of a and b has a duration of tc = ta + tb.
A comprehensive discussion on the LoDs is presented in a previous
publication by the third author [12]. The second consideration for these
activity classes, especially in the case of the roller, is the equipment
emission and fuel consumption level which have different values in
these different types of activities [34]. The outcome of this project can
inform future research on activity recognition-based emission estima-
tion based on distinct engine tiers and power modes.

A single set of accelerometer readings at a given time step would be
meaningless without being placed in a larger context of recent accel-
erometer readings. To capture the temporal contexts critical to the
problem, the six channels of sensor readings were segmented into
overlapping frames of 2 s worth of activity each. Since the sensors re-
corded data at a sampling rate of 100 Hz, 2 s of activity corresponds to
200 samples. The frames were computed by running a sliding window
200 samples wide across the raw data. Each frame was labeled ac-
cording to the activity at the last sample in the frame, and the sliding
window advanced 1 sample at a time so that 199 samples worth of
context were provided for every time step. Thus, the models were
tasked with predicting the activity label at every time step, given 2 s
worth of context. Larger windows might be chosen at the cost of greater
computational complexity while smaller windows might be useful in
real-time monitoring applications where a 2 s lead time is unacceptable.
For this problem, 2 s frames were appropriate.

The training and validation sets were segmented into frames in-
dependently to prevent validation data from leaking into the training
set at the boundary between the data set partitions. Before feeding the
segmented frames into the models, they were oriented so as to place
time on the vertical axis, with the six sensor channels running side-by-
side horizontally. Each of the sensor channels was normalized to fall in
the range [0, 1]. Fig. 7 depicts an example data frame.

The red box represents a (3, 1) filter that the models slide across
each channel in the frame while computing convolutional features. It is
not drawn to scale. In reality, its height would be 3 cs (0.03 s), and its
width would be 1 channel. The signals are labeled by the accelerometer
axis they represent (x, y, z) and subscripted with the number of the
sensor they belong to.

Fig. 3. An overview of the developed methodology.

Fig. 4. The computation graphs connecting two layers of a fully-connected
network and two layers of a convolutional network are compared above. The
convolutional network drops many connections and reuses weights depicted by
arrows with the same visual style.
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4.2. Convolution

Eq. (1) describes how to convolve a 1D filter K of width W with
discrete input signal X(τ):

∑∗ = −
=

K X τ K i X τ i( )( ) ( ) ( )
i

W

1 (1)

To convolve a 2D filter K of width W and height H with X(τ),Eq. (2)
can be applied:

∑ ∑∗ = − −
= =

K X τ K i j X τ i τ j( )( ) ( , ) ( , )
i

H

j

W

1 1 (2)

The pattern extends to arbitrary dimensionality. An intuitive take on
these sorts of computations is that the filter slides over the input signal
in its various dimensions and computes a new signal. As the filter slides,
the (i, j) component of the new signal is the result of centering the filter
at (i, j) in the input signal and computing the sum of the element-wise
products between the filter's entries and the corresponding values of the
input signal, wherever they overlap.

Convolutional filters are often used as feature detectors.
Convolutional neural networks typically make use of multiple filters in
each layer, which allows them to compute multiple features inter-
preting different aspects of the data they are processing. Deep con-
volutional networks can then build higher-level, more abstract feature
detectors by applying the filters in later layers to the features detected
by earlier layers.

4.3. Deep learning models

The Python library Keras was used to implement all of the models
studied on top of a TensorFlow backend. Models studied include
BaselineCNN, a fairly standard convolutional neural network, and
DeepConvLSTM, a more sophisticated network that combines convolu-
tional layers with recurrent LSTM layers. Although these models were
heavily inspired by the work of Ordóñez and Roggen [32] in human
activity recognition, a few significant changes were made. First, to

Fig. 5. Activity data vs. time for the roller compactor experiments. The data used for training lies in the white region, the validation data in the blue, and data not
considered in the yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Activity data vs. time for the excavator experiment. Validation set in blue region. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 7. A 2-second frame of sensor data computed by the sliding window pre-
processing step.
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speed up convergence during training, batch normalization layers were
inserted between each convolutional layer. Also, a dropout layer was
added between the block of convolutional feature extractors and the
rest of the network. This layer randomly deactivates 25% of the features
passed between these segments of the network per batch during
training as an additional form of regularization. In other words, it
discourages learning overdependence on any particular feature to im-
prove the model's generalization abilities [35]. The convolutional
baseline and hybrid convolutional-recurrent architectures intentionally
share many characteristics. Both start with a block of four consecutive
convolutional layers, each of which learns 64 different filters of size (3,
1). These filters apply convolutions only along the time axis of the input
frames to ensure that features derived from each sensor channel remain
independent until they reach later layers of the network. Max pooling is
omitted to better preserve the translational equivariance of the con-
volutional feature extractors because the positions of features along the
time axis within the frames are of critical importance for this problem.
The two models studied diverge in terms of the architectures they use to
interpret the outputs of this common feature extracting block. Base-
lineCNN uses two fully-connected layers with 128 neurons each, fol-
lowed by a softmax classifier, to compute a likelihood score for each
activity label. The largest score is interpreted as the model's activity
prediction. DeepConvLSTM uses LSTM layers instead of the fully-con-
nected layers to make its activity predictions. To keep the LSTM layers
comparable to the baseline's fully-connected layers, they use state
vectors of size 128. Networks inside the LSTM layers learn to manage
their state vectors like a memory containing only the most salient de-
tails of an observed sequence that is otherwise too large recall [36].
Because LSTMs' memories are better suited to dealing with time series,
higher performance is expected from DeepConvLSTM compared to
BaselineCNN. Fig. 8 illustrates two activation functions commonly used
in networks inside each LSTM layer— tanh and the sigmoid function (σ)
— while Fig. 9 illustrates what goes on inside an LSTM layer, alongside
its equations.

Perhaps the simplest kind of neural network is the multilayer per-
ceptron (MLP). A perceptron computes a linear output by multiplying
an input vector x by a matrix of learned weightsW and adding a learned
bias term b, just like a vectorized form of the classic linear equation
y = mx + b.An MLP builds a non-linear (potentially deep) model by
feeding a perceptron's output through a non-linear activation function
like the sigmoid function σ and cascading several such structures. The
generic equation for the output of a single layer of a multilayer per-
ceptron is thus y = σ(W ∙ x + b). Building an MLP with all possible
connections between adjacent layers reflected in the weights W results
in the usual fully-connected network.

An LSTM cell holds its memories in a state vector C, which can have
arbitrary size (128 in DeepConvLSTM). When provided a sequence input
x, the LSTM cell processes each value in the sequence at time t in a

recurrent fashion, producing an output ht for each input xt. In addition
to xt, the LSTM cell considers its previous state vector Ct−1and its
previous output ht−1when calculating its current state Ct and current
output ht. The state Ct is calculated according to Eq. (3):

= ∙ + ∙ = ∙ +− −C f C i C f σ W h x bwhere ( [ , ] )t t t t t t f t t f1 1 (3)

The quantity ft is often called the “forget gate” because it controls
which parts of the previous state Ct−1 are erased. A similar quantity it
controls which parts of the tentative state Ct get remembered, ac-
cording to Eq. (4):

= ∙ +−i σ W h x b( [ , ] )t i t t i1 (4)

Both ft and it are calculated just as if they were layers of an MLP. The
concatenation of the previous output ht−1 and current input xt, [ht−1,
xt], gets multiplied by a linear weight matrix W, adjusted by a bias term
b, then molded to fit the range [0,1] by the sigmoid activation function.
Ultimately, ft and it are vectors of values between 0 and 1, so they are
naturally viewed as weight vectors determining which parts of the old
and candidate states determine the current state Ct after element-wise
multiplication. The output at each time step is dependent on the cal-
culated state and is given by Eq. (5):

= ∙ = ∙ +−h o tanhtanh C o σ W h x b( ), where ( [ , ] )t t t t o t t o1 (5)

Here ot is another weight vector with values in [0,1] calculated by
the familiar MLP equation. Note that the output of tanh is in the range
[−1, 1].

5. Results

5.1. Training

Each model was trained for five epochs of batched gradient descent,
running Adam with a batch size of 100 frames and a learning rate of
0.001. Adam is a variation on the standard stochastic gradient descent
optimization algorithm that adjusts the learning rate based on a run-
ning average and the running variance of the recent gradients, which
often speeds up convergence [38]. LSTMs are sometimes difficult to
train due to cascading gradients; to avoid this problem, gradient clip-
ping was applied with a maximum gradient value of 0.5 and a max-
imum gradient norm of 1.0 [39]. At the end of each epoch, a snapshot
of the models' parameters was saved. The final parameters chosen for
each model were those among the snapshots that yielded the highest
validation accuracies. Both models were able to achieve high training
accuracies, with DeepConvLSTM achieving nearly perfect training ac-
curacies, but such high training accuracies occurred at the expense of
validation accuracy (see Fig. 10). Validation accuracy here refers to the
accuracy of the model measured on a dataset not used for training. A
dataset can be considered a statistical distribution. When evaluating

Fig. 8. The equations and graphs of the sigmoid and tanh functions.
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machine learning models, it is a standard practice to split a dataset into
two or more disjoint subsets while attempting to retain the statistical
characteristics of the overall distribution. A model trained on a subset
of the data called the training set can be evaluated on another subset of
the data that it did not encounter during training called the validation
set. Validation accuracy in the context of this work is defined as the
ratio of correct activity label predictions to the total number of activity
labels produced by a model observing the validation set after being
trained on the training set.

Although one might worry than an LSTM that tends to overfit the
training data is simply memorizing the training data, the highest vali-
dation accuracy DeepConvLSTM achieved was better than the highest
validation accuracy that BaselineCNN managed, suggesting that
DeepConvLSTM retained significant predictive value beyond mere
memorization.

5.2. Classification overview

Although BaselineCNN and DeepConvLSTM both managed reason-
ably good validation accuracies in classifying the compactor's activities,
DeepConvLSTM displayed higher performance. When dealing with ea-
sier subproblems where similar activities were combined into a single
category, the performance of both models improved. As DeepConvLSTM
was shown to be superior in identifying the roller compactor's activities
across all trials, it was the only model applied to the excavator. This is
because the goal of the comparison is to find a deep learning model that
has a high accuracy in predicting construction equipment activities
which can be used universally for all the equipment types. In the ex-
cavator experiment, DeepConvLSTM achieved high validation ac-
curacies, making mainly reasonable errors despite the excavator's ac-
tivities being more complex than the roller compactor's activities.

5.3. Compactor: Six-activity identification problem

Tasked with distinguishing among six activities of the roller com-
pactor, BaselineCNN managed a respectable validation accuracy of
74.2% and DeepConvLSTM went further, achieving a validation accu-
racy of 77.1%. Additional performance metrics including precision,
recall, and F1 score for both models are presented in Table 1. To il-
lustrate how the models might behave when modeling real-time
equipment activities, the predictions of both BaselineCNN (a) and
DeepConvLSTM (b) are plotted against the ground truth activity labels in
Fig. 11. Deviations from the ground truth signal plotted as a bold black
line present as spikes of blue or green on the plots. Overall, the Deep-
ConvLSTM predictions displayed in blue match the ground truth signal
much more closely than the BaselineCNN predictions shown in green.

5.4. Compactor: Direction-only subproblem

With the possible activity labels reduced to just Forward and
Backward by combining all of the vibration settings with the same di-
rection into a single class, BaselineCNN achieved a high validation ac-
curacy of 93.6% and a high average F1 score of 0.94. DeepConvLSTM
achieved an even higher validation accuracy of 96.2% and a similarly
higher average F1 score of 0.96. Distinguishing the direction in which
the roller compactor was moving was very well handled by both
models.

5.5. Compactor: Vibration-setting only subproblem

With the possible activity labels reduced to just the vibration set-
tings High, Low, and Off by ignoring the direction in which the roller
compactor was moving, BaselineCNN managed a reasonable validation

Fig. 9. A diagram of an LSTM cell and its governing equations. Inspired by Olah [37].

Fig. 10. Accuracy and loss curves for DeepConvLSTM in the six-class compactor experiment.
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accuracy of 74.4% and an average F1 score of 0.75. DeepConvLSTM
achieved a slightly higher validation accuracy of 75.2% and a slightly
higher average F1 score of 0.75. Distinguishing the vibration mode in
which the compactor was operating appears to be a much harder sub-
problem than distinguishing the directions of its movements.

5.6. Excavator: Seven-activity identification problem

In this problem, possible activities were Idling, Traveling, Scooping,
Dropping, Rotating (left), Rotating (right), and Various. DeepConvLSTM
achieved a validation accuracy of 77.6% and an average F1 score of
0.78. Although the dataset was imbalanced in favor of the Various ac-
tivity class (over 40% of the data), counteracting the imbalance with a
weighted loss function decreased the F1 score. The unweighted results

Table 1
Compactor activity metrics for BaselineCNN and DeepConvLSTM.

Activity label Precision Recall F1-Score

BaselineCNN DeepConvLSTM BaselineCNN DeepConvLSTM BaselineCNN DeepConvLSTM

Forward (Vibration: High) 0.73 0.81 0.77 0.73 0.75 0.77
Backward (Vibration: High) 0.81 0.75 0.34 0.32 0.47 0.45
Forward (Vibration: Low) 0.65 0.72 0.67 0.8 0.66 0.76
Backward (Vibration: Low) 0.76 0.75 0.91 0.93 0.83 0.83
Forward (Vibration: Off) 0.87 0.80 0.72 0.9 0.79 0.85
Backward (Vibration: Off) 0.69 0.86 0.99 0.86 0.82 0.86
Average 0.75 0.78 0.73 0.76 0.72 0.75

Fig. 11. (a) Compactor activity predictions of BaselineCNN vs. the ground truth data and (b) Compactor activity predictions of DeepConvLSTM compared to the
ground truth data.
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were judged to be most representative and are summarized in Table 2.
This is not surprising since Various consists of multiple actions from the
other categories rather than being a distinct activity itself. The model
struggled a little in identifying the Traveling activity, but it only com-
prised 2% of the data. As the confusion matrix in Fig. 12(a) shows, most
of the model's errors were related to the Various activity. To illustrate
the model's predictive power beyond confusion related to the Various
category, two additional sets of performance metrics are reported (see
Table 2 and Fig. 12).

The No Various and Adjusted Idle results derive from an instance of
DeepConvLSTM trained and evaluated separately on a subset of the full
data set. To compose this subset, every frame with the label Various was
omitted from both training and validation. This setup is somewhat ar-
tificial since it renders the model incapable of reasonably processing the
full data set as it is. In other words, it would not know what to do with
all of the Various labels since that category is no longer in its vocabu-
lary. However, it provides a reasonable estimation of how the model
might perform in scenarios where there is no ambiguous label like
Various – after all, this label is merely an artifact of the difficulties of
manually labeling the ground truth data when many complex activities
are involved. DeepConvLSTM managed a very high validation accuracy
of 90.7%, and an average F1 score of 0.91. As the confusion matrix in
Fig. 12(b) suggests, the model benefitted somewhat from the fact that
the removal of the Various activities left a disproportionately high
number of Idle frames. Intermediate results throughout experimentation
suggest that the Idle activity is fairly easy to classify with extremely
high accuracy. To give an estimate of the model's performance under
conditions that are less favorable but still unambiguous, the same
model (trained without the Various frames) was evaluated on a mod-
ified version of its validation set with the first 14,335 instances of Idle
removed as well (Adjusted Idle). Under these conditions, the class dis-
tribution in the validation data set was well-balanced. DeepConvLSTM

still managed a respectable validation accuracy of 82.5% and an
average F1 score of 0.83.

6. Discussion

As illustrated above in Fig. 10, the models were able to fit the
training data almost perfectly, particularly DeepConvLSTM. Although
this work did not manage to translate that performance perfectly to the
validation set, that level of training set performance suggests that the
models are complex enough to predict the activities of construction
equipment from time series of accelerometer data recorded during the
equipment's activities. Despite the large amount of sensor readings
available due to the relatively high sampling rate of 100 Hz, the data
sets used in these experiments only represented 20 to 30 min of real-
world activities. It is expected that the models, in particular Deep-
ConvLSTM, would better overcome the generalization gap given more
training data. Furthermore, state-of-the-art results in human gesture
recognition benefitted greatly from combining different sensor mod-
alities [32]. In the cases presented here, only limited sensor data was
available beyond the accelerometer information, and preliminary at-
tempts to leverage those additional sensor modalities did not improve
the results. It is likely that additional kinds of sensor information could
improve the accuracies of the models' activity predictions; however, it
is also encouraging that accelerometer data are a potent source of in-
formation on construction equipment activities by themselves.

At 74.2%, the validation accuracy that BaselineCNN achieved in the
full roller compactor activity classification problem appears similar to
the validation accuracy of 77.1% that DeepConvLSTM achieved.
However, as the plots of the models' predictions against the ground
truth data shown in Fig. 11 highlight, DeepConvLSTM managed much
smoother predictions with a character qualitatively similar to that of
the ground truth data (i.e. the predictions have fewer jagged jumps

Table 2
Excavator activity metrics for DeepConvLSTM.

Activity label Precision Recall F1-Score

Full data No Various Adjusted Idle Full data No Various Adjusted Idle Full data No Various Adjusted Idle

Idling 0.90 1.00 1.00 0.97 0.96 0.81 0.93 0.98 0.89
Traveling 0.42 0.99 0.99 0.22 0.57 0.57 0.29 0.72 0.72
Scooping 0.32 0.70 0.73 0.75 0.96 0.96 0.45 0.81 0.83
Dropping 0.66 0.83 0.83 0.65 0.65 0.65 0.66 0.73 0.73
Rotating (left) 0.68 0.69 0.69 0.74 0.93 0.93 0.71 0.79 0.79
Rotating (right) 0.82 0.94 0.94 0.80 0.80 0.80 0.81 0.86 0.86
Various 0.84 N/A N/A 0.65 N/A N/A 0.73 N/A N/A
Average 0.81 0.92 0.85 0.78 0.91 0.83 0.78 0.91 0.83

Fig. 12. The confusion matrices for DeepConvLSTM's performance in the excavator case. Predicted labels on the vertical axis; actual labels on the horizontal axis.

T. Slaton, et al. Automation in Construction 113 (2020) 103138

10



deviating from the ground truth), revealing it to be a significantly su-
perior model. This visual quality of smoothness is closely related to the
quantitative measurement accuracy, which is why the model's predic-
tions are particularly smooth on the training set, where it achieved
almost 100% accuracy. Should it be necessary for further study, this
notion of “smoothness” could be more directly quantified by a measure
such as the number of activity label changes per some standardized
number of time steps.

In addition to showing significantly smoother predictions in the case
of the compactor, DeepConvLSTM was also able to accurately predict the
activities of the excavator. As the confusion matrix in Fig. 12a above
shows, many of DeepConvLSTM's mistakes appear to come from plau-
sible similarities between the Various activity category and isolated
activities overlapping with it. As recorded in Table 2, DeepConvLSTM
achieved very high performance when the ambiguity of the Various
class was removed from its considerations. In addition to showing sig-
nificantly smoother predictions in the case of the compactor, Deep-
ConvLSTM was also able to accurately predict the activities of the ex-
cavator. As the confusion matrix in Fig. 12a above shows, many of
DeepConvLSTM's mistakes appear to come from plausible similarities
between the Various activity category and isolated activities over-
lapping with it. As recorded in Table 2, DeepConvLSTM achieved very
high performance when the ambiguity of the Various class was removed
from its considerations.

It seems a reasonable conjecture that the movements of construction
machinery are less likely to be peculiar to individual subjects than the
movements of human workers since equipment is made in standardized
shapes and sizes and articulates in more prescribed ways. Thus, models
trained to recognize the activities of a single piece of equipment or a
small set of machines should retain accuracy when tasked with pre-
dicting the activities of different machines of the same kind. Any
equipment activity recognition system released in production will re-
quire this property to apply the training it received in the factory to the
customer's equipment. Future work will study how well models gen-
eralize to different machines of a given type after being trained on
particular machines of that type, as well as study the links between
machine activities and their emissions.

In addition, data augmentation techniques applicable to time series
such as the jittering, scaling, rotation, and time-warping very recently
explored with great success by Rashid and Louis [15] seem likely to
improve the accuracies of deep learning models trained on accel-
erometer data, particularly when the amount of available training data
is small. It is interesting that the results presented here show sig-
nificantly higher validation accuracies when no data augmentation is
used (around 80% compared to around 60% in the most comparable
work of Rashid and Louis), especially because the work here is based on
much less available data (145,068 time steps on average across the
pieces of equipment studied here compared to approximately 576,000
time steps in the work of Rashid and Louis). A significant difference that
could explain the significantly better accuracies found here under the
aforementioned conditions is the use of convolutional feature extrac-
tion in this study. Future work should more carefully study the impacts
of convolutional feature extraction and of data augmentation in time-
series-based deep learning models. It seems likely a combination of
these two techniques could yield better results.

7. Limitations

While the presented study is a promising early step toward building
automatic, reliable, and extendible construction equipment activity
recognition frameworks, even better results can be obtained if certain
limitations are addressed. First of all, the authors cannot eliminate the
possibility that the models used could be improved in some way – either
by fixing some undetected flaw or by using some superior architecture.
However, given that nearly perfect training accuracy was achieved and
that additional regularization could not reduce the gap between

training and validation performance, the authors are left to conclude
that the models suffered most significantly from not having enough
data. Although the data augmentation techniques explored by Rashid
and Louis [15] could help, the best solution would be gathering more
data. The volume of data studied here was the maximum amount the
researchers could get access to in a timely manner given a preference
for real data in a live environment and restrictions on collecting data on
the industry partner's jobsite. Even though this dataset was large en-
ough to show the promise of the models developed, real-world opera-
tions of construction equipment entail a great deal of variations within
an activity that would not allow models to distinguish them from the
variations that denote changes in activities, if the dataset is not con-
siderably large. Researchers working in construction equipment activity
recognition would benefit from assembling a large, open body of
quality data on multiple types and multiple instances of equipment
performing various activities that would allow stronger predictive
claims to be made at the level required by future production activity
recognition systems.

8. Conclusion

Automated analysis of heavy construction equipment activities
provides insight into the performance of the involved resources. The
work here proposed a framework for automated analysis of heavy
construction equipment activities involving outfitting the equipment
with low-cost accelerometer sensors, labeling the activities from real
work performed while recording acceleration patterns produced by the
equipment, and training deep learning models to make predictions
about the equipment's activities when labels are not available. This
framework was evaluated using two different deep learning archi-
tectures – BaselineCNN and DeepConvLSTM – on two different kinds of
heavy machinery performing very different tasks – a roller compactor
landscaping at a hotel and an excavator digging a sewage trench. The
MyoMotion 684 sensors used in these experiments provided more re-
liable and more accurate readings free of calibration issues that pre-
vious work faced when using sensors embedded in smartphones. Unlike
previous activity recognition frameworks relying on shallow machine
learning models, the deep learning architectures used here were able to
extract features by themselves, eliminating a great deal of manual work
that would otherwise be spent on feature selection, achieving greater
accuracies without the biases introduced by manual feature design, and
allowing the models to adapt to the different kinds of equipment stu-
died without manual modification across cases.

Whereas previous research into construction equipment activity
recognition has largely only considered a few broad activity categories
like Idling, Working, and Off, the models presented here were able to
achieve very high accuracies even while distinguishing between much
more complex activity categories. Given that these models are depen-
dent only on accelerometer data, it should be relatively easy to outfit
equipment with the necessary sensors. The best model studied,
DeepConvLSTM, reached particularly high validation accuracies despite
having access to limited training data. Since accelerometers are not
intrusive, it is feasible that an activity monitoring system reliant on
them could be deployed without disrupting normal work; from there,
the system could continuously gather data and improve its perfor-
mance.

Previous studies in this area of research have established a com-
pelling precedent on the importance of construction activity recogni-
tion and its implications on improving productivity, safety, and sus-
tainability measures of construction projects. This study contributes to
the construction engineering and management body of knowledge by
advancing this research topic in various ways. As a first step toward the
important goal of creating automatic, scalable, and adaptable equip-
ment activity recognition, this study advances the research in this area
by showing how a hybrid deep learning model consisting of both con-
volutional and LSTM layers can reliably predict equipment activities. As
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indicated in the Limitations section, obtaining more training data could
push accuracy and reliability higher, even with the same architectures.
Armed with accurate activity recognition models, future studies could
make claims linking patterns in activity transitions to greater emissions
or lower productivity, which in turn increases emissions released to
complete a given construction task due to increased equipment running
times. Models tracking these quantities on an entire fleet after having
been trained on similar equipment by researchers or manufacturers
could suggest specific modifications to operators' working styles and
work patterns to lower emissions, improve productivity, or both at
scale.

Moreover, the presented research is part of an ongoing study that
aims to predict emission levels resulting from the activities of heavy
construction equipment. Building upon the findings of this work, the
authors are working on enhanced deep learning architectures that en-
able mapping equipment activities to the emission levels of various
gases with environmental impacts.
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